14 resultados para Laplace inverse transform
em Cochin University of Science
Resumo:
Fourier transform methods are employed heavily in digital signal processing. Discrete Fourier Transform (DFT) is among the most commonly used digital signal transforms. The exponential kernel of the DFT has the properties of symmetry and periodicity. Fast Fourier Transform (FFT) methods for fast DFT computation exploit these kernel properties in different ways. In this thesis, an approach of grouping data on the basis of the corresponding phase of the exponential kernel of the DFT is exploited to introduce a new digital signal transform, named the M-dimensional Real Transform (MRT), for l-D and 2-D signals. The new transform is developed using number theoretic principles as regards its specific features. A few properties of the transform are explored, and an inverse transform presented. A fundamental assumption is that the size of the input signal be even. The transform computation involves only real additions. The MRT is an integer-to-integer transform. There are two kinds of redundancy, complete redundancy & derived redundancy, in MRT. Redundancy is analyzed and removed to arrive at a more compact version called the Unique MRT (UMRT). l-D UMRT is a non-expansive transform for all signal sizes, while the 2-D UMRT is non-expansive for signal sizes that are powers of 2. The 2-D UMRT is applied in image processing applications like image compression and orientation analysis. The MRT & UMRT, being general transforms, will find potential applications in various fields of signal and image processing.
Resumo:
In many situations probability models are more realistic than deterministic models. Several phenomena occurring in physics are studied as random phenomena changing with time and space. Stochastic processes originated from the needs of physicists.Let X(t) be a random variable where t is a parameter assuming values from the set T. Then the collection of random variables {X(t), t ∈ T} is called a stochastic process. We denote the state of the process at time t by X(t) and the collection of all possible values X(t) can assume, is called state space
Resumo:
A method for computer- aided diagnosis of micro calcification clusters in mammograms images presented . Micro calcification clus.eni which are an early sign of bread cancer appear as isolated bright spots in mammograms. Therefore they correspond to local maxima of the image. The local maxima of the image is lint detected and they are ranked according to it higher-order statistical test performed over the sub band domain data
Resumo:
Magnetism and magnetic materials have been an ever-attractive subject area for engineers and scientists alike because of its versatility in finding applications in useful devices. They find applications in a host of devices ranging from rudimentary devices like loud speakers to sophisticated gadgets like waveguides and Magnetic Random Access Memories (MRAM).The one and only material in the realm of magnetism that has been at the centre stage of applications is ferrites and in that spinel ferrites received the lions share as far as practical applications are concerned.It has been the endeavour of scientists and engineers to remove obsolescence and improve upon the existing so as to save energy and integrate in to various other systems. This has been the hallmark of material scientists and this has led to new materials and new technologies.In the field of ferrites too there has been considerable interest to devise new materials based on iron oxides and other compounds. This means synthesising ultra fine particles and tuning its properties to device new materials. There are various preparation techniques ranging from top- down to bottom-up approaches. This includes synthesising at molecular level, self assembling,gas based condensation. Iow temperature eo-precipitation, solgel process and high energy ball milling. Among these methods sol-gel process allows good control of the properties of ceramic materials. The advantage of this method includes processing at low temperature. mixing at the molecular level and fabrication of novel materials for various devices.Composites are materials. which combine the good qualities of one or more components. They can be prepared in situ or by mechanical means by the incorporation of fine particles in appropriate matrixes. The size of the magnetic powders as well as the nature of matrix affect the processability and other physical properties of the final product. These plastic/rubber magnets can in turn be useful for various applications in different devices. In applications involving ferrites at high frequencies, it is essential that the material possesses an appropriate dielectric permittivity and suitable magnetic permeability. This can be achieved by synthesizing rubber ferrite composites (RFC's). RFCs are very useful materials for microwave absorptions. Hence the synthesis of ferrites in the nanoregirne.investigations on their size effects on the structural, magnetic, and electrical properties and the incorporation of these ferrites into polymer matrixes assume significance.In the present study, nano particles of NiFe204, Li(!5Fe2S04 and Col-e-O, are prepared by sol gel method. By appropriate heat treatments, particles of different grain sizes are obtained. The structural, magnetic and electrical measurements are evaluated as a function of grain size and temperature. NiFel04 prepared in the ultrafine regime are then incorporated in nitrile rubber matrix. The incorporation was carried out according to a specific recipe and for various loadings of magnetic fillers. The cure characteristics, magnetic properties, electrical properties and mechanical properties of these elastomer blends are carried out. The electrical permittivity of all the rubber samples in the X - band are also conducted.
Resumo:
Electromagnetic tomography has been applied to problems in nondestructive evolution, ground-penetrating radar, synthetic aperture radar, target identification, electrical well logging, medical imaging etc. The problem of electromagnetic tomography involves the estimation of cross sectional distribution dielectric permittivity, conductivity etc based on measurement of the scattered fields. The inverse scattering problem of electromagnetic imaging is highly non linear and ill posed, and is liable to get trapped in local minima. The iterative solution techniques employed for computing the inverse scattering problem of electromagnetic imaging are highly computation intensive. Thus the solution to electromagnetic imaging problem is beset with convergence and computational issues. The attempt of this thesis is to develop methods suitable for improving the convergence and reduce the total computations for tomographic imaging of two dimensional dielectric cylinders illuminated by TM polarized waves, where the scattering problem is defmed using scalar equations. A multi resolution frequency hopping approach was proposed as opposed to the conventional frequency hopping approach employed to image large inhomogeneous scatterers. The strategy was tested on both synthetic and experimental data and gave results that were better localized and also accelerated the iterative procedure employed for the imaging. A Degree of Symmetry formulation was introduced to locate the scatterer in the investigation domain when the scatterer cross section was circular. The investigation domain could thus be reduced which reduced the degrees of freedom of the inverse scattering process. Thus the entire measured scattered data was available for the optimization of fewer numbers of pixels. This resulted in better and more robust reconstructions of the scatterer cross sectional profile. The Degree of Symmetry formulation could also be applied to the practical problem of limited angle tomography, as in the case of a buried pipeline, where the ill posedness is much larger. The formulation was also tested using experimental data generated from an experimental setup that was designed. The experimental results confirmed the practical applicability of the formulation.
Resumo:
In the present study, nano particles of NiFe3O4, I_.l()5Feg5O4 and CoFegO4 are prepared by sol gel method. By appropriate heat treatments, particles of different grain sizes are obtained. The structural, magnetic and electrical measurements are evaluated as a function of grain size and temperature. NiFe3O4 prepared in the ultrafine regime are then incorporated in nitrile rubber matrix. The incorporation was carried out according to a specific recipe and for various loadings of magnetic fillers. The cure characteristics, magnetic properties, electrical properties and mechanical properties of these elastomer blends are carried out. The electrical permittivity of all the rubber samples in the X — band are also conducted
Resumo:
This paper presents the application of wavelet processing in the domain of handwritten character recognition. To attain high recognition rate, robust feature extractors and powerful classifiers that are invariant to degree of variability of human writing are needed. The proposed scheme consists of two stages: a feature extraction stage, which is based on Haar wavelet transform and a classification stage that uses support vector machine classifier. Experimental results show that the proposed method is effective
Resumo:
Partial moments are extensively used in actuarial science for the analysis of risks. Since the first order partial moments provide the expected loss in a stop-loss treaty with infinite cover as a function of priority, it is referred as the stop-loss transform. In the present work, we discuss distributional and geometric properties of the first and second order partial moments defined in terms of quantile function. Relationships of the scaled stop-loss transform curve with the Lorenz, Gini, Bonferroni and Leinkuhler curves are developed
Resumo:
The magnetocaloric properties of cobalt ferrite nanoparticles were investigated to evaluate the potential of these materials as magnetic refrigerants. Nanosized cobalt ferrites were synthesized by the method of sol–gel combustion. The nanoparticles were found to be spherical with an average crystallite size of 14 nm. The magnetic entropy change ( Sm) calculated indirectly from magnetization isotherms in the temperature region 170–320 K was found to be negative, signifying an inverse magnetocaloric effect in the nanoparticles. The magnitudes of the Sm values were found to be larger when compared to the reported values in the literature for the corresponding ferrite materials in the nanoregime.
Resumo:
This paper compares the most common digital signal processing methods of exon prediction in eukaryotes, and also proposes a technique for noise suppression in exon prediction. The specimen used here which has relevance in medical research, has been taken from the public genomic database - GenBank.Here exon prediction has been done using the digital signal processing methods viz. binary method, EIIP (electron-ion interaction psuedopotential) method and filter methods. Under filter method two filter designs, and two approaches using these two designs have been tried. The discrete wavelet transform has been used for de-noising of the exon plots.Results of exon prediction based on the methods mentioned above, which give values closest to the ones found in the NCBI database are given here. The exon plot de-noised using discrete wavelet transform is also given.Alterations to the proven methods as done by the authors, improves performance of exon prediction algorithms. Also it has been proven that the discrete wavelet transform is an effective tool for de-noising which can be used with exon prediction algorithms
Resumo:
In this paper, a new directionally adaptive, learning based, single image super resolution method using multiple direction wavelet transform, called Directionlets is presented. This method uses directionlets to effectively capture directional features and to extract edge information along different directions of a set of available high resolution images .This information is used as the training set for super resolving a low resolution input image and the Directionlet coefficients at finer scales of its high-resolution image are learned locally from this training set and the inverse Directionlet transform recovers the super-resolved high resolution image. The simulation results showed that the proposed approach outperforms standard interpolation techniques like Cubic spline interpolation as well as standard Wavelet-based learning, both visually and in terms of the mean squared error (mse) values. This method gives good result with aliased images also.
Resumo:
The standard separable two dimensional wavelet transform has achieved a great success in image denoising applications due to its sparse representation of images. However it fails to capture efficiently the anisotropic geometric structures like edges and contours in images as they intersect too many wavelet basis functions and lead to a non-sparse representation. In this paper a novel de-noising scheme based on multi directional and anisotropic wavelet transform called directionlet is presented. The image denoising in wavelet domain has been extended to the directionlet domain to make the image features to concentrate on fewer coefficients so that more effective thresholding is possible. The image is first segmented and the dominant direction of each segment is identified to make a directional map. Then according to the directional map, the directionlet transform is taken along the dominant direction of the selected segment. The decomposed images with directional energy are used for scale dependent subband adaptive optimal threshold computation based on SURE risk. This threshold is then applied to the sub-bands except the LLL subband. The threshold corrected sub-bands with the unprocessed first sub-band (LLL) are given as input to the inverse directionlet algorithm for getting the de-noised image. Experimental results show that the proposed method outperforms the standard wavelet-based denoising methods in terms of numeric and visual quality
Resumo:
Super Resolution problem is an inverse problem and refers to the process of producing a High resolution (HR) image, making use of one or more Low Resolution (LR) observations. It includes up sampling the image, thereby, increasing the maximum spatial frequency and removing degradations that arise during the image capture namely aliasing and blurring. The work presented in this thesis is based on learning based single image super-resolution. In learning based super-resolution algorithms, a training set or database of available HR images are used to construct the HR image of an image captured using a LR camera. In the training set, images are stored as patches or coefficients of feature representations like wavelet transform, DCT, etc. Single frame image super-resolution can be used in applications where database of HR images are available. The advantage of this method is that by skilfully creating a database of suitable training images, one can improve the quality of the super-resolved image. A new super resolution method based on wavelet transform is developed and it is better than conventional wavelet transform based methods and standard interpolation methods. Super-resolution techniques based on skewed anisotropic transform called directionlet transform are developed to convert a low resolution image which is of small size into a high resolution image of large size. Super-resolution algorithm not only increases the size, but also reduces the degradations occurred during the process of capturing image. This method outperforms the standard interpolation methods and the wavelet methods, both visually and in terms of SNR values. Artifacts like aliasing and ringing effects are also eliminated in this method. The super-resolution methods are implemented using, both critically sampled and over sampled directionlets. The conventional directionlet transform is computationally complex. Hence lifting scheme is used for implementation of directionlets. The new single image super-resolution method based on lifting scheme reduces computational complexity and thereby reduces computation time. The quality of the super resolved image depends on the type of wavelet basis used. A study is conducted to find the effect of different wavelets on the single image super-resolution method. Finally this new method implemented on grey images is extended to colour images and noisy images
Resumo:
This thesis comprises five chapters including the introductory chapter. This includes a brief introduction and basic definitions of fuzzy set theory and its applications, semigroup action on sets, finite semigroup theory, its application in automata theory along with references which are used in this thesis. In the second chapter we defined an S-fuzzy subset of X with the extension of the notion of semigroup action of S on X to semigroup action of S on to a fuzzy subset of X using Zadeh's maximal extension principal and proved some results based on this. We also defined an S-fuzzy morphism between two S-fuzzy subsets of X and they together form a category S FSETX. Some general properties and special objects in this category are studied and finally proved that S SET and S FSET are categorically equivalent. Further we tried to generalize this concept to the action of a fuzzy semigroup on fuzzy subsets. As an application, using the above idea, we convert a _nite state automaton to a finite fuzzy state automaton. A classical automata determine whether a word is accepted by the automaton where as a _nite fuzzy state automaton determine the degree of acceptance of the word by the automaton. 1.5. Summary of the Thesis 17 In the third chapter we de_ne regular and inverse fuzzy automata, its construction, and prove that the corresponding transition monoids are regular and inverse monoids respectively. The languages accepted by an inverse fuzzy automata is an inverse fuzzy language and we give a characterization of an inverse fuzzy language. We study some of its algebraic properties and prove that the collection IFL on an alphabet does not form a variety since it is not closed under inverse homomorphic images. We also prove some results based on the fact that a semigroup is inverse if and only if idempotents commute and every L-class or R-class contains a unique idempotent. Fourth chapter includes a study of the structure of the automorphism group of a deterministic faithful inverse fuzzy automaton and prove that it is equal to a subgroup of the inverse monoid of all one-one partial fuzzy transformations on the state set. In the fifth chapter we define min-weighted and max-weighted power automata study some of its algebraic properties and prove that a fuzzy automaton and the fuzzy power automata associated with it have the same transition monoids. The thesis ends with a conclusion of the work done and the scope of further study.