3 resultados para Lagrange multiplier principle

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decimal multiplication is an integral part offinancial, commercial, and internet-based computations. The basic building block of a decimal multiplier is a single digit multiplier. It accepts two Binary Coded Decimal (BCD) inputs and gives a product in the range [0, 81] represented by two BCD digits. A novel design for single digit decimal multiplication that reduces the critical path delay and area is proposed in this research. Out of the possible 256 combinations for the 8-bit input, only hundred combinations are valid BCD inputs. In the hundred valid combinations only four combinations require 4 x 4 multiplication, combinations need x multiplication, and the remaining combinations use either x or x 3 multiplication. The proposed design makes use of this property. This design leads to more regular VLSI implementation, and does not require special registers for storing easy multiples. This is a fully parallel multiplier utilizing only combinational logic, and is extended to a Hex/Decimal multiplier that gives either a decimal output or a binary output. The accumulation ofpartial products generated using single digit multipliers is done by an array of multi-operand BCD adders for an (n-digit x n-digit) multiplication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decimal multiplication is an integral part of financial, commercial, and internet-based computations. This paper presents a novel double digit decimal multiplication (DDDM) technique that performs 2 digit multiplications simultaneously in one clock cycle. This design offers low latency and high throughput. When multiplying two n-digit operands to produce a 2n-digit product, the design has a latency of (n / 2) 1 cycles. The paper presents area and delay comparisons for 7-digit, 16-digit, 34-digit double digit decimal multipliers on different families of Xilinx, Altera, Actel and Quick Logic FPGAs. The multipliers presented can be extended to support decimal floating-point multiplication for IEEE P754 standard

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decimal multiplication is an integral part of financial, commercial, and internet-based computations. This paper presents a novel double digit decimal multiplication (DDDM) technique that offers low latency and high throughput. This design performs two digit multiplications simultaneously in one clock cycle. Double digit fixed point decimal multipliers for 7digit, 16 digit and 34 digit are simulated using Leonardo Spectrum from Mentor Graphics Corporation using ASIC Library. The paper also presents area and delay comparisons for these fixed point multipliers on Xilinx, Altera, Actel and Quick logic FPGAs. This multiplier design can be extended to support decimal floating point multiplication for IEEE 754- 2008 standard.