8 resultados para LOW-TEMPERATURE GAAS
em Cochin University of Science
Resumo:
Zinc salts of ethyl, isopropyl, and butyl xanthates were prepared in the laboratory. The effect of these xanthates in combination with zinc diethyldithiocarbamate (ZDC) on the vulcanization of silica-filled NBR compounds has been studied at different temperatures. The cure times of these compounds were compared with that of NBR compounds containing tetramethylthiuram disulphide/dibenzthiazyl disulphide. The rubber compounds with the xanthates and ZDC were cured at various temperatures from 60 to 150°C. The sheets were molded and properties such as tensile strength, tear strength, crosslink density, elongation at break, compression set, abrasion resistance, flex resistance, heat buildup, etc. were evaluated. The properties showed that zinc salt of xanthate/ZDC combination has a positive synergistic effect on the cure rate and mechanical properties of NBR compounds.
Resumo:
Zinc salts of ethyl, isopropyl, and butyl xanthates are prepared in the laboratory, and the effect of these xanthates with zinc diethyl dithiocarbamate (ZDC) on the vulcanization of HAF-filled nitrile butadiene rubber (NBR) compounds has been studied at different temperatures. The cure times of these compounds have been compared with that of NBR compounds containing TMTD/MBTS. The rubber compounds with the three xanthate accelerators and ZDC are cured at various temperatures from 60 to 150°C. The sheets are molded and properties such as tensile strength, tear strength, cross-link density, elongation at break, compression set, abrasion resistance, flex resistance, etc. have been evaluated. The properties show that zinc salt of the xanthate/ZDC accelerator system has a positive synergistic effect on the cure rate and mechanical properties of NBR compounds.
Resumo:
Microcellular (MC) soles based on polybutadiene (BR) and low-density polyethylene (LDPE) blends for low-temperature applications were developed. A part of BR in BR-LDPE blend was replaced by natural rubber (NR) for property improvement. The BR-NR-LDPE blend-based MC sole shows good technical properties. Sulphur curing and DCP curing were tried in BR-LDPE and NR-BR-LDPE blends. Study shows that sulphur-cured MC sheets possess better technical properties than DCPcured MC sheets. 90/10 BR-LDPE and 60/30/10 BR-NR-LDPE blend combinations are found to be suitable for low-temperature applications.
Resumo:
ABSTRACT: Zinc salts of ethyl, isopropyl, and butyl xanthates were prepared in the laboratory. They were purified by reprecipitation and were characterized by IR, NMR, and thermogravimetric analysis techniques. The melting points were also determined. The rubber compounds with different xanthate accelerators were cured at temperatures from 30 to 150°C. The sheets were molded and properties such as tensile strength, tear strength, crosslink density, elongation at break, and modulus at 300% elongation were evaluated. The properties showed that all three xanthate accelerators are effective for room temperature curing.
Resumo:
This thesis summarizes the results on the growth and characterisation of thin films of HA grown on TiAl6V4 (Ti) implant material at a lower substrate temperature by a combination of Pulsed laser deposition and a hydrothermal treatment to get sufficiently strong crystalline films suitable for orthopaedic applications. The comparison of the properties of the coated substrate has been made with other surface modification techniques like anodization and chemical etching. The in-vitro study has been conducted on the surface modified implants to assess its cell viability. A molecular level study has been conducted to analyze the adhesion mechanism of protein adhesion molecules on to HA coated implants.
Resumo:
The primary objective of this work is to develop an efficient accelerator system for low temperature vulcanization of rubbers. Although xanthates are known to act as accelerators for low temperature vulcanization, a systematic study on the mechanism of vulcanization, the mechanical properties of the vulcanizates at varying temperatures of vulcanization, cure characteristics etc are not reported. Further. xanthate based curing systems are not commonly used because of their chance for premature vulcanization during processing. The proposed study is to develop a novel accelerator system for the low temperature vulcanization of rubbers having enough processing safely. lt is also proposed to develop a method for the prevulcanisation of natural rubber latex at room temperature. As already mentioned the manufacture of rubber products at low temperature will improve its quality and appearance. Also, energy consumption can be reduced by low temperature vulcanization. in addition, low temperature vulcanization will be extremely useful in the area of repair of defective products, since subjecting finished products to high temperatures during the process of repair will adversely affect the quality of the product. Further. room temperature curing accelerator systems will find extensive applications in surface coating industries.
Resumo:
Nanocomposites with magnetic components possessing nanometric dimensions, lying in the range 1–10 nm, are found to be exhibiting superior physical properties with respect to their coarser sized counterparts. Magnetic nanocomposites based on gamma iron oxide embedded in a polymer matrix have been prepared and characterized. The behaviour of these samples at low temperatures have been studied using Mössbauer spectroscopy. Mössbauer studies indicate that the composites consist of very fine particles of g-Fe2O3 of which some amount exists in the superparamagnetic phase. The cycling of the preparative conditions were found to increase the amount of g-Fe2O3 in the matrix
Resumo:
Isora fibre-reinforced natural rubber (NR) composites were cured at 80, 100, 120 and 150°C using a low temperature curing accelerator system. Composites were also prepared using a conventional accelerator system and cured at 150°C. The swelling behavior of these composites at varying fibre loadings was studied in toluene and hexane. Results show that the uptake of solvent and volume fraction of rubber due to swelling was lower for the low temperature cured vulcanizates which is an indication of the better fibre/rubber adhesion. The uptake of aromatic solvent was higher than that of aliphatic solvent, for all the composites. As the fibre content increased, the solvent uptake decreased, due to the superior solvent resistance of the fibre and good fibre-rubber interactions. The bonding agent improved the swelling resistance of the composites due to the strong interfacial adhesion. Due to the improved adhesion between the fibre and rubber, the ratio of the change in volume fraction of rubber due to swelling to the volume fraction of rubber in the dry sample (V,) was found to decrease in the presence of bonding agent. At a fixed fibre loading, the alkali treated fibre composite showed a lower percentage swelling than untreated one for both systems showing superior rubber-fibre interactions.