3 resultados para LOW-MODULUS

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: Zinc salts of ethyl, isopropyl, and butyl xanthates were prepared in the laboratory. They were purified by reprecipitation and were characterized by IR, NMR, and thermogravimetric analysis techniques. The melting points were also determined. The rubber compounds with different xanthate accelerators were cured at temperatures from 30 to 150°C. The sheets were molded and properties such as tensile strength, tear strength, crosslink density, elongation at break, and modulus at 300% elongation were evaluated. The properties showed that all three xanthate accelerators are effective for room temperature curing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Young’s modulus and Poisson’s ratio of high-quality silicon nitride films with 800 nm thickness, grown on silicon substrates by low-pressure chemical vapor deposition, were determined by measuring the dispersion of laser-induced surface acoustic waves. The Young’s modulus was also measured by mechanical tuning of commercially available silicon nitride cantilevers, manufactured from the same material, using the tapping mode of a scanning force microscope. For this experiment, an expression for the oscillation frequencies of two-media beam systems is derived. Both methods yield a Young’s modulus of 280–290 GPa for amorphous silicon nitride, which is substantially higher than previously reported (E5146 GPa). For Poisson’s ratio, a value of n 50.20 was obtained. These values are relevant for the determination of the spring constant of the cantilever and the effective tip–sample stiffness

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Latex protein allergy is a serious problem faced by users of natural rubber latex products. This is severe in health care workers, who are constantly using latex products like examination gloves, surgical gloves etc. Out of the total proteins only a small fraction is extractable and only these proteins cause allergic reactions in sensitized people. Enzymic deproteinisation of latex and leaching and chlorination of latex products are the common methods used to reduce the severity of the problem.Enzyme deproteinisation is a cubersome process involving high cost and process loss.Physical properties of such films are poor. Leaching is a lengthy process and in leached latex products presence of extractable proteins is observed on further storing. Chlorination causes yellowing of latex products and reduction in tensile properties.In this context a more simple process of removal of extractable proteins from latex itself was investigated. This thesis reports the application of poly propylene glycol (PPG) to displace extractable proteins from natural latex. PPG is added to 60 % centrifuged natural latex to the extent of 0.2 % m/rn, subssequently diluted to 30 % dry rubber content and again concentrated to obtain a low protein latex.Dilution of concentrated latex and subsequent concentration lead to a total reduction in non - rubber solids in the concentrate, especially proteins and reduction in the ionic concentration in the aqueous phase of the latex. It has been reported that proteins in natural rubber / latex affect its behaviour in the vulcanisation process. Ionic concentration in the aqueous phase of latex influence the stability, viscosity and flow behaviour of natural latex. Hence, a detailed technological evaluation was carried out on this low protein latex. In this study, low protein latex was compared with single centrifuged latex ( the raw material to almost every latex product), double centrifuged latex ( because dilution and second concentration of latex is accompanied by protein removal to some extent and reduction in the ionic concentration of the aqueous phase of latex.). Studies were conducted on Sulphur cure in conventional and EV systems under conditions of post ~ cure and prevulcanisation of latex. Studies were conducted on radiation cure in latex stage. Extractable protein content in vulcanised low protein latex films are observed to be very low. lt is observed that this low protein latex is some what slower curing than single centrifuged latex, but faster than double centrifuged latex. Modulus of low protein latex films were slightly low. In general physical properties of vulcanised low protein latex films are only siightly lower than single centrifuged latex. Ageing properties of the low protein latex films were satisfactory. Viscosity and flow behaviour of low protein latex is much better than double centrifuged latex and almost comparable to single centrifuged latex. On observing that the physical properties and flow behaviour of low protein latex was satisfactory, it was used for the preparation of examination gloves and the gloves were evaluated. It is observed that the properties are conforming to the Indian Standard Specifications. It is thus observed that PPG treatment of natural latex is a simple process of preparing low protein latex. Extractable protein content in these films are very low.The physical properties of the films are comparable to ordinary centrifuged latex and better than conventionally deprotenized latex films. This latex can be used for the production of examination gloves.