8 resultados para LIMITING VALVES

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical limiting and thermal lensing studies are carried out in C70–toluene solutions. The measurements are performed using 9-ns pulses generated from a frequencydoubled Nd:YAG laser at 532 nm. Optical limiting studies in fullerene molecules lead to the conclusion that reverse saturable absorption is the major mechanism for limiting. Analysis of thermal lensing measurements showed a quadratic dependence of thermal lens signal on incident laser energy, which also supports the view that optical limiting in C70 arises due to sequential two-photon absorption via excited triplet state (reverse saturable absorption).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulsed photoacoustic studies in solutions of C70 in toluene are made using the 532-nm radiation from a frequency-doubled Nd:YAG laser. It is found that contrary to expectation, there is no photoacoustic (PA) signal enhancement in the power-limiting range of laser fluences. Instead, the PA signal tends to saturate during optical power-limiting phenomenon. This could be due to the enhanced optical absorption from the photoexcited state and hence the depletion of the ground-state population. PA measurements also ruled out the possibility of multiphoton absorption in the C70 solution. We demonstrate that the nonlinear absorption leading to optical limiting is mainly due to reverse saturable absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical limiting and thermo-optic properties of C60 in toluene are studied using 532 nm, 9 ns pulses from a frequency-doubled Nd:YAG laser. Optical limiting studies in these fullerene molecules lead to the conclusion that reverse saturable absorption is the major mechanism for limiting properties in these molecules. Thermal lensing measurements are also performed in fullerene solutions. The quadratic dependence of thermal lens signal on incident energy confirms that enhanced optical absorption by the sample via excited triplet state absorption may play a leading role in the limiting property.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulsed photoacoustic studies in solution of C60 in toluene have been made using the 532 nm radiation from a frequency doubled Nd:YAG laser. Though C60 is found to exhibit the phenomenon of optical limiting, the results on photoacoustic measurements do not give any indication of multiphoton transitions as suggested in some of the earlier works. Results of photoacoustic measurements show that excited state absorption is the dominant process responsible for optical limiting while phenomena like nonlinear scattering may contribute to a lesser extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanosecond optical limiting characteristics of sandwich-type neodymium diphthalocyanine in a co-polymer matrix of polymethyl methacrylate (PMMA) and methyl-2-cyanoacrylate have been studied for the first time. The measurements were performed using 9 ns laser pulses generated from a frequency-doubled Nd:YAG laser at 532 nm wavelength. The optical limiting performance of neodymium diphthalocyanine in co-polymer host was studied at different linear transmission. Laser damage threshold was also measured for the doped and undoped co-polymer samples. The optical limiting response is attributed to reverse saturable absorption which is due to excited-state absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanosecond optical-limiting characteristics (at 532 nm) of some rare-earth metallo-phthalocyanines (Sm(Pc)2, Eu(Pc)2, and LaPc) doped in a copolymer matrix of poly(methyl methacrylate) and methyl-2-cyanoacrylate have been studied for the first time to our knowledge. The optical-limiting response is attributed to reverse saturable absorption due to excited-state absorption. The performance of LaPc in a copolymer host is studied at different linear transmissions. The laser damage thresholds of all the samples are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of salinity on phytoplankton varies widely, because different species have different salinity preferences. Like marine and aquatic species, many phytoplankton species exhibit tolerance to certain salinity, beyond which, it can inhibit their growth. Light is the most important factor that influences phytoplankton growth. In aquatic environments (lakes, sea or estuary) the light incident on the surface is rapidly reduced exponentially with depth (Krik, 1994). In estuaries, the major factor influencing the light availability is the suspended particulate matter, which attenuates and scatters the light. The light changes with time of the day and the season, affecting the amount of light penetrating the water column. Similarly, biological factor like copepod grazing is a major factor influencing the standing crop of phytoplankton. The copepod can actively graze up to 75% of the phytoplankton biomass in a tropical estuary (Tan et. al., 2004). It is in the context that the present study investigates the salinity, light (physical factors) and copepod grazing (biological factor) phytoplankton as the factors controlling phytoplankton growth and distribution

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic heterostructures with carbon nanotubes having multiple functionalities are fascinating materials which can be manipulated by means of an external magnetic field. In this paper we report our investigations on the synthesis and optical limiting properties of pristine cobalt nanotubes and high coercivity cobalt-in-carbon nanotubes (a new nanosystem where carbon nanotubes are filled with cobalt nanotubes). A general mobility assisted growth mechanism for the formation of one-dimensional nanostructures inside nanopores is verified in the case of carbon nanotubes. The open-aperture z-scan technique is employed for the optical limiting measurements in which nanosecond laser pulses at 532 nm have been used for optical excitation. Compared to the benchmark pristine carbon nanotubes these materials show an enhanced nonlinear optical absorption, and the nonlinear optical parameters calculated from the data show that these materials are efficient optical limiters. To the best of our knowledge this is the first report where the optical limiting properties of metal nanotubes are compared to those of carbon nanotubes