13 resultados para Korovkin theorem

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Safety critical software failure can have a high price. Such software should be free of errors before it is put into operation. Application of formal methods in the Software Development Life Cycle helps to ensure that the software for safety critical missions are ultra reliable. PVS theorem prover, a formal method tool, can be used for the formal verification of software in ADA Language for Flight Software Application (ALFA.). This paper describes the modeling of ALFA programs for PVS theorem prover. An ALFA2PVS translator is developed which automatically converts the software in ALFA to PVS specification. By this approach the software can be verified formally with respect to underflow/overflow errors and divide by zero conditions without the actual execution of the code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Safety critical software failure can have a high price. Such software should be free of errors before it is put into operation. Application of formal methods in the Software Development Life Cycle helps to ensure that the software for safety critical missions are ultra reliable. PVS theorem prover, a formal method tool, can be used for the formal verification of software in ADA Language for Flight Software Application (ALFA.). This paper describes the modeling of ALFA programs for PVS theorem prover. An ALFA2PVS translator is developed which automatically converts the software in ALFA to PVS specification. By this approach the software can be verified formally with respect to underflow/overflow errors and divide by zero conditions without the actual execution of the code

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is to look the effect of change in the ordering of the Fourier system on Szegö’s classical observations of asymptotic distribution of eigenvalues of finite Toeplitz forms.This is done by checking proofs and Szegö’s properties in the new set up.The Fourier system is unconditional [19], any arbitrary ordering of the Fourier system forms a basis for the Hilbert space L2 [-Π, Π].Here study about the classical Szegö’s theorem.Szegö’s type theorem for operators in L2(R+) and check its validity for certain multiplication operators.Since the trigonometric basis is not available in L2(R+) or in L2(R) .This study discussed about the classes of orderings of Haar System in L2 (R+) and in L2(R) in which Szegö’s Type TheoreT Am is valid for certain multiplication operators.It is divided into two sections. In the first section there is an ordering to Haar system in L2(R+) and prove that with respect to this ordering, Szegö’s Type theorem holds for general class of multiplication operators Tƒ with multiplier ƒ ε L2(R+), subject to some conditions on ƒ.Finally in second section more general classes of ordering of Haar system in L2(R+) and in L2(R) are identified in such a way that for certain classes of multiplication operators the asymptotic distribution of eigenvalues exists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study on some infinite convex invariants. The origin of convexity can be traced back to the period of Archimedes and Euclid. At the turn of the nineteenth centaury , convexicity became an independent branch of mathematics with its own problems, methods and theories. The convexity can be sorted out into two kinds, the first type deals with generalization of particular problems such as separation of convex sets[EL], extremality[FA], [DAV] or continuous selection Michael[M1] and the second type involved with a multi- purpose system of axioms. The theory of convex invariants has grown out of the classical results of Helly, Radon and Caratheodory in Euclidean spaces. Levi gave the first general definition of the invariants Helly number and Radon number. The notation of a convex structure was introduced by Jamison[JA4] and that of generating degree was introduced by Van de Vel[VAD8]. We also prove that for a non-coarse convex structure, rank is less than or equal to the generating degree, and also generalize Tverberg’s theorem using infinite partition numbers. Compare the transfinite topological and transfinite convex dimensions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, we explore the design, computation, and experimental analysis of photonic crystals, with a special emphasis on structures and devices that make a connection with practically realizable systems. First, we analyze the propenies of photonic-crystal: periodic dielectric structures that have a band gap for propagation. The band gap of periodically loaded air column on a dielectric substrate is computed using Eigen solvers in a plane wave basis. Then this idea is extended to planar filters and antennas at microwave regime. The main objectives covered in this thesis are:• Computation of Band Gap origin in Photonic crystal with the abet of Maxwell's equation and Bloch-Floquet's theorem • Extension of Band Gap to Planar structures at microwave regime • Predict the dielectric constant - synthesized dieletric cmstant of the substrates when loaded with Photonic Band Gap (PBG) structures in a microstrip transmission line • Identify the resonant characteristic of the PBG cell and extract the equivalent circuit based on PBG cell and substrate parameters for microstrip transmission line • Miniaturize PBG as Defected Ground Structures (DGS) and use the property to be implemented in planar filters with microstrip transmission line • Extended the band stop effect of PBG / DGS to coplanar waveguide and asymmetric coplanar waveguide. • Formulate design equations for the PBG / DGS filters • Use these PBG / DGS ground plane as ground plane of microstrip antennas • Analysis of filters and antennas using FDID method

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we are studying possible invariants in hydrodynamics and hydromagnetics. The concept of flux preservation and line preservation of vector fields, especially vorticity vector fields, have been studied from the very beginning of the study of fluid mechanics by Helmholtz and others. In ideal magnetohydrodynamic flows the magnetic fields satisfy the same conservation laws as that of vorticity field in ideal hydrodynamic flows. Apart from these there are many other fields also in ideal hydrodynamic and magnetohydrodynamic flows which preserves flux across a surface or whose vector lines are preserved. A general study using this analogy had not been made for a long time. Moreover there are other physical quantities which are also invariant under the flow, such as Ertel invariant. Using the calculus of differential forms Tur and Yanovsky classified the possible invariants in hydrodynamics. This mathematical abstraction of physical quantities to topological objects is needed for an elegant and complete analysis of invariants.Many authors used a four dimensional space-time manifold for analysing fluid flows. We have also used such a space-time manifold in obtaining invariants in the usual three dimensional flows.In chapter one we have discussed the invariants related to vorticity field using vorticity field two form w2 in E4. Corresponding to the invariance of four form w2 ^ w2 we have got the invariance of the quantity E. w. We have shown that in an isentropic flow this quantity is an invariant over an arbitrary volume.In chapter three we have extended this method to any divergence-free frozen-in field. In a four dimensional space-time manifold we have defined a closed differential two form and its potential one from corresponding to such a frozen-in field. Using this potential one form w1 , it is possible to define the forms dw1 , w1 ^ dw1 and dw1 ^ dw1 . Corresponding to the invariance of the four form we have got an additional invariant in the usual hydrodynamic flows, which can not be obtained by considering three dimensional space.In chapter four we have classified the possible integral invariants associated with the physical quantities which can be expressed using one form or two form in a three dimensional flow. After deriving some general results which hold for an arbitrary dimensional manifold we have illustrated them in the context of flows in three dimensional Euclidean space JR3. If the Lie derivative of a differential p-form w is not vanishing,then the surface integral of w over all p-surfaces need not be constant of flow. Even then there exist some special p-surfaces over which the integral is a constant of motion, if the Lie derivative of w satisfies certain conditions. Such surfaces can be utilised for investigating the qualitative properties of a flow in the absence of invariance over all p-surfaces. We have also discussed the conditions for line preservation and surface preservation of vector fields. We see that the surface preservation need not imply the line preservation. We have given some examples which illustrate the above results. The study given in this thesis is a continuation of that started by Vedan et.el. As mentioned earlier, they have used a four dimensional space-time manifold to obtain invariants of flow from variational formulation and application of Noether's theorem. This was from the point of view of hydrodynamic stability studies using Arnold's method. The use of a four dimensional manifold has great significance in the study of knots and links. In the context of hydrodynamics, helicity is a measure of knottedness of vortex lines. We are interested in the use of differential forms in E4 in the study of vortex knots and links. The knowledge of surface invariants given in chapter 4 may also be utilised for the analysis of vortex and magnetic reconnections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis Entitled Spectral theory of bounded self-adjoint operators -A linear algebraic approach.The main results of the thesis can be classified as three different approaches to the spectral approximation problems. The truncation method and its perturbed versions are part of the classical linear algebraic approach to the subject. The usage of block Toeplitz-Laurent operators and the matrix valued symbols is considered as a particular example where the linear algebraic techniques are effective in simplifying problems in inverse spectral theory. The abstract approach to the spectral approximation problems via pre-conditioners and Korovkin-type theorems is an attempt to make the computations involved, well conditioned. However, in all these approaches, linear algebra comes as the central object. The objective of this study is to discuss the linear algebraic techniques in the spectral theory of bounded self-adjoint operators on a separable Hilbert space. The usage of truncation method in approximating the bounds of essential spectrum and the discrete spectral values outside these bounds is well known. The spectral gap prediction and related results was proved in the second chapter. The discrete versions of Borg-type theorems, proved in the third chapter, partly overlap with some known results in operator theory. The pure linear algebraic approach is the main novelty of the results proved here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During recent years, the theory of differential inequalities has been extensively used to discuss singular perturbation problems and method of lines to partial differential equations. The present thesis deals with some differential inequality theorems and their applications to singularly perturbed initial value problems, boundary value problems for ordinary differential equations in Banach space and initial boundary value problems for parabolic differential equations. The method of lines to parabolic and elliptic differential equations are also dealt The thesis is organised into nine chapters

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of simple chaotic maps for non-equilibrium processes in statistical physics has been one of the central themes in the theory of chaotic dynamical systems. Recently, many works have been carried out on deterministic diffusion in spatially extended one-dimensional maps This can be related to real physical systems such as Josephson junctions in the presence of microwave radiation and parametrically driven oscillators. Transport due to chaos is an important problem in Hamiltonian dynamics also. A recent approach is to evaluate the exact diffusion coefficient in terms of the periodic orbits of the system in the form of cycle expansions. But the fact is that the chaotic motion in such spatially extended maps has two complementary aspects- - diffusion and interrnittency. These are related to the time evolution of the probability density function which is approximately Gaussian by central limit theorem. It is noticed that the characteristic function method introduced by Fujisaka and his co-workers is a very powerful tool for analysing both these aspects of chaotic motion. The theory based on characteristic function actually provides a thermodynamic formalism for chaotic systems It can be applied to other types of chaos-induced diffusion also, such as the one arising in statistics of trajectory separation. It was noted that there is a close connection between cycle expansion technique and characteristic function method. It was found that this connection can be exploited to enhance the applicability of the cycle expansion technique. In this way, we found that cycle expansion can be used to analyse the probability density function in chaotic maps. In our research studies we have successfully applied the characteristic function method and cycle expansion technique for analysing some chaotic maps. We introduced in this connection, two classes of chaotic maps with variable shape by generalizing two types of maps well known in literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mathematical models are often used to describe physical realities. However, the physical realities are imprecise while the mathematical concepts are required to be precise and perfect. The 1st chapter give a brief summary of the arithmetic of fuzzy real numbers and the fuzzy normed algebra M(I). Also we explain a few preliminary definitions and results required in the later chapters. Fuzzy real numbers are introduced by Hutton,B [HU] and Rodabaugh, S.E[ROD]. Our definition slightly differs from this with an additional minor restriction. The definition of Clementina Felbin [CL1] is entirely different. The notations of [HU]and [M;Y] are retained inspite of the slight difference in the concept.the 3rd chapter In this chapter using the completion M'(I) of M(I) we give a fuzzy extension of real Hahn-Banch theorem. Some consequences of this extension are obtained. The idea of real fuzzy linear functional on fuzzy normed linear space is introduced. Some of its properties are studied. In the complex case we get only a slightly weaker analogue for the Hahn-Banch theorem, than the one [B;N] in the crisp case