5 resultados para Kinetic undercooling
em Cochin University of Science
Resumo:
The role of thyroid hormones in DNA synthesis and in the activity of Thymidille kinase (TK), a key regulatory enzyme of DNA synthesis was studied in proliferating hepatocytes in vivo. Liver regeneration after partial hepatectomy was used as a model for controlled cell division in rats having different thyroid status - euthyroid, hypothyroid and 3,3',5'-triiodo-L-thyronine (T))-heated hypothyroid. Partial hepatectomy caused a significant elevation of DNA synthesis (p<0.01) in all the three groups compared to their sham-operated counterparts. Hypothyroid liepatectomised animals showed significantly lower (p<0.01) level of DNA synthesis than euthyroid hepatectomised animals. A single subcutaneous close of 1'3 to hypothyroid shamoperated animals resulted in a significant increase (p<0.01) of DNA synthesis in the intact liver. 17tis was comparable to the level of DNA synthesis occurring in regenerating liver of euthyroid animals. In hypothyroid hepatectomised animals, "1'3 showed an additive effect on l)NA synthesis and this group exhibited maximum level of DNA synthesis (p<0.0I ). Studies of the kinetic parameters of TK show that the Michelis-Menten constant, (K111) of TK for thymidine was altered by the thyroid status. K11 increased significantly (p<0.01) in untreated hypothyroid animals when compared to the euthyroid rats. '13 treatment of hypothyroid animals reversed this effect and this group showed the lowest value for K111 (p<0.01). Thus our results indicate that thyroid hormones can influence DNA synthesis during liver regeneration and they may regulate the activity of enzymes such as 17rymidine kinase which are important for DNA synthesis and hence cell division.
Effect Insulin on DNA Synthesis and Kinetic Parameters of Thymidine Kinase During Liver Regenaration
Resumo:
The effect of insulin on cell proliferation in vivo has been studied in hepatectomised streptozotocin- diabetic rats. The extent of cell proliferation in sham and hepatectomized- control, diabetic and insulin treated rats were monitored by determining DNA content and [3H]thymidine incorporation into DNA. The kinetic parameters of thymidine kinase a regulatory enzyme for DNA synthesis was also studied in these groups. The rate of DNA synthesis in liver of streptozotocin -diabetic rats was significantly higher 24 hrs post-hepatectomy compared to control and insulin treated diabetic groups. Kinetic studies of thymidine kinase revealed that there was no change in the Michaelis -Menten constant (Km) whereas maximum velocity (Vmax) was elevated in the diabetic hepatectomized groups compared to control and insulin treated hepatectomized groups. Thus our study elucidates the role of insulin in thymidine kinase activity and DNA synthesis.
Resumo:
The functional basis of diabetes-mellitus to a certain extent, can be elucidated by studying diabetes-induced changes in metabolic enzymes. Malate dehydrogenase (MDH), is an enzyme directly involved in glucose metabolism. The kinetic parameters of MDH and its purified cytosolic isozyme, S-MDH, have been studied in the liver of streptozotocin- diabetic rats; also the potential of the leaf extract of A. marmelose as an was investigated. The Km of the liver enzyme increased significantly, in both crude and purified preparations in the diabetic state when compared to Lhe respective controls. Insulin as well as leaf- •extract treatment of the diabetic rats brought about a reversal of K. values to near normal. Vmax of purified S-MDH was significantly higher in the diabetic state when compared to the control. Insulin and leaf extract treatment did not reverse this change. Since MDH is an important enzyme in glucose metabolism, the variation in its quantitative and qualitative nature may contribute to the pathological status of diabetes. The fact that leaf extract of A. marmelose was found to be as effective as insulin in restoration of blood glucose and body weight to normal levels, the use of A. marmelose as potential hypoglycemic agent is suggested.
Resumo:
The nature of the diperiodatocuprate(III) (DPC) species present in aqueous alkaline medium has been investigated by a kinetic and mechanistic study on the oxidation of iodide by DPC. The reaction kinetics were studied over the 1.0 ´ 10)3±0.1 mol dm)3 alkali range. The reaction order with respect to DPC, as well as iodide, was found to be unity when [DPC] [I)]. In the 1.0 ´ 10)3±1.0 ´ 10)2 mol dm)3 alkali region, the rate decreased with increase in the alkali concentration and a plot of the pseudo-®rst order rate constant, k versus 1/[OH)] was linear. Above 5.0 ´ 10)2 mol dm)3, a plot of k versus [OH)] was also linear with a non-zero intercept. An increase in ionic strength of the reaction mixtures showed no e ect on k at low alkali concentrations, whereas at high concentrations an increase in ionic strength leads to an increase in k. A plot of 1/k versus [periodate] was linear with an intercept in both alkali ranges. Iodine was found to accelerate the reaction at the three di erent alkali concentrations employed. The observed results indicated the following equilibria for DPC.
Resumo:
The title reaction was undertaken to establish the interaction between amantadine and molybdate at physiological pH. Identical FTIR spectra, TG-DTA curves and CHN data of the complexes formed from three solutions at pH 1.5, 7.4 and 8.0 indicate that the same complex was formed at all the three pHs. The FTIR spectrum shows shift in peaks corresponding to primary amino group of the drug due to coordination to molybdate. An octahedral geometry is assigned to the complex. The kinetics of the complexation has been studied at low concentrations of the reactants using UV-visible spectrophotometry. At pH 7.4, the initial rate varies linearly with [molybdate]. A plot of initial rate versus [drug] is linear passing through origin. These results indicate that the drug and molybdate react at pH 7.4 even at low concentrations. At pH 1.5, the rate increases linearly with increase in [drug] but decreases with [molybdate]. The effect of pH and ionic strength on the rate of the reaction has also been studied. A suitable mechanism has been proposed for the reaction. Reaction between the drug and molybdate even at low concentrations and the fact that the amino group of amantadine required to be free for its function as antiviral, is bound to molybdate in the complex suggests that simultaneous administration of the drug and molybdate supplements should be avoided.