11 resultados para Kinetic theory of granular flows
em Cochin University of Science
Resumo:
The role of thyroid hormones in DNA synthesis and in the activity of Thymidille kinase (TK), a key regulatory enzyme of DNA synthesis was studied in proliferating hepatocytes in vivo. Liver regeneration after partial hepatectomy was used as a model for controlled cell division in rats having different thyroid status - euthyroid, hypothyroid and 3,3',5'-triiodo-L-thyronine (T))-heated hypothyroid. Partial hepatectomy caused a significant elevation of DNA synthesis (p<0.01) in all the three groups compared to their sham-operated counterparts. Hypothyroid liepatectomised animals showed significantly lower (p<0.01) level of DNA synthesis than euthyroid hepatectomised animals. A single subcutaneous close of 1'3 to hypothyroid shamoperated animals resulted in a significant increase (p<0.01) of DNA synthesis in the intact liver. 17tis was comparable to the level of DNA synthesis occurring in regenerating liver of euthyroid animals. In hypothyroid hepatectomised animals, "1'3 showed an additive effect on l)NA synthesis and this group exhibited maximum level of DNA synthesis (p<0.0I ). Studies of the kinetic parameters of TK show that the Michelis-Menten constant, (K111) of TK for thymidine was altered by the thyroid status. K11 increased significantly (p<0.01) in untreated hypothyroid animals when compared to the euthyroid rats. '13 treatment of hypothyroid animals reversed this effect and this group showed the lowest value for K111 (p<0.01). Thus our results indicate that thyroid hormones can influence DNA synthesis during liver regeneration and they may regulate the activity of enzymes such as 17rymidine kinase which are important for DNA synthesis and hence cell division.
Effect Insulin on DNA Synthesis and Kinetic Parameters of Thymidine Kinase During Liver Regenaration
Resumo:
The effect of insulin on cell proliferation in vivo has been studied in hepatectomised streptozotocin- diabetic rats. The extent of cell proliferation in sham and hepatectomized- control, diabetic and insulin treated rats were monitored by determining DNA content and [3H]thymidine incorporation into DNA. The kinetic parameters of thymidine kinase a regulatory enzyme for DNA synthesis was also studied in these groups. The rate of DNA synthesis in liver of streptozotocin -diabetic rats was significantly higher 24 hrs post-hepatectomy compared to control and insulin treated diabetic groups. Kinetic studies of thymidine kinase revealed that there was no change in the Michaelis -Menten constant (Km) whereas maximum velocity (Vmax) was elevated in the diabetic hepatectomized groups compared to control and insulin treated hepatectomized groups. Thus our study elucidates the role of insulin in thymidine kinase activity and DNA synthesis.
Resumo:
The functional basis of diabetes-mellitus to a certain extent, can be elucidated by studying diabetes-induced changes in metabolic enzymes. Malate dehydrogenase (MDH), is an enzyme directly involved in glucose metabolism. The kinetic parameters of MDH and its purified cytosolic isozyme, S-MDH, have been studied in the liver of streptozotocin- diabetic rats; also the potential of the leaf extract of A. marmelose as an was investigated. The Km of the liver enzyme increased significantly, in both crude and purified preparations in the diabetic state when compared to Lhe respective controls. Insulin as well as leaf- •extract treatment of the diabetic rats brought about a reversal of K. values to near normal. Vmax of purified S-MDH was significantly higher in the diabetic state when compared to the control. Insulin and leaf extract treatment did not reverse this change. Since MDH is an important enzyme in glucose metabolism, the variation in its quantitative and qualitative nature may contribute to the pathological status of diabetes. The fact that leaf extract of A. marmelose was found to be as effective as insulin in restoration of blood glucose and body weight to normal levels, the use of A. marmelose as potential hypoglycemic agent is suggested.
Resumo:
The thesis presents the dynamics of a polymer chain under tension. It includes existing theories of polymer fracture, important theories of reaction rates, the rate using multidimensional transition state theory and apply it to the case of polyethylene etc. The main findings of the study are; the life time of the bond is somewhat sensitive to the potential lead to rather different answers, for a given potential a rough estimate of the rate can be obtained by a simples approximation that considers the dynamics of only the bond that breaks and neglects the coupling to neighboring bonds. Dynamics of neighboring bonds would decrease the rate, but usually not more than by one order of magnitude, for the breaking of polyethylene, quantum effects are important only for temperatures below 150K, the lifetime strongly depends on the strain and as the strain varies over a narrow range, the life varies rapidly from 105 seconds to 10_5 seconds, if we change one unit of the polymer by a foreign atom, say by one sulphure atom, in the main chain itself, by a weaker bond, the rate is found to increase by orders of magnitude etc.
Resumo:
The current study is aimed at the development of a theoretical simulation tool based on Discrete Element Method (DEM) to 'interpret granular dynamics of solid bed in the cross section of the horizontal rotating cylinder at the microscopic level and subsequently apply this model to establish the transition behaviour, mixing and segregation.The simulation of the granular motion developed in this work is based on solving Newton's equation of motion for each particle in the granular bed subjected to the collisional forces, external forces and boundary forces. At every instant of time, the forces are tracked and the positions velocities and accelarations of each partcle is The software code for this simulation is written in VISUAL FORTRAN 90 After checking the validity of the code with special tests, it is used to investigate the transition behaviour of granular solids motion in the cross section of a rotating cylinder for various rotational speeds and fill fraction.This work is hence directed towards a theoretical investigation based on Discrete Element Method (DEM) of the motion of granular solids in the radial direction of the horizontal cylinder to elucidate the relationship between the operating parameters of the rotating cylinder geometry and physical properties ofthe granular solid.The operating parameters of the rotating cylinder include the various rotational velocities of the cylinder and volumetric fill. The physical properties of the granular solids include particle sizes, densities, stiffness coefficients, and coefficient of friction Further the work highlights the fundamental basis for the important phenomena of the system namely; (i) the different modes of solids motion observed in a transverse crosssection of the rotating cylinder for various rotational speeds, (ii) the radial mixing of the granular solid in terms of active layer depth (iii) rate coefficient of mixing as well as the transition behaviour in terms of the bed turnover time and rotational speed and (iv) the segregation mechanisms resulting from differences in the size and density of particles.The transition behaviour involving its six different modes of motion of the granular solid bed is quantified in terms of Froude number and the results obtained are validated with experimental and theoretical results reported in the literature The transition from slumping to rolling mode is quantified using the bed turnover time and a linear relationship is established between the bed turn over time and the inverse of the rotational speed of the cylinder as predicted by Davidson et al. [2000]. The effect of the rotational speed, fill fraction and coefficient of friction on the dynamic angle of repose are presented and discussed. The variation of active layer depth with respect to fill fraction and rotational speed have been investigated. The results obtained through simulation are compared with the experimental results reported by Van Puyvelde et. at. [2000] and Ding et at. [2002].The theoretical model has been further extended, to study the rmxmg and segregation in the transverse direction for different particle sizes and their size ratios. The effect of fill fraction and rotational speed on the transverse mixing behaviour is presented in the form of a mixing index and mixing kinetics curve. The segregation pattern obtained by the simulation of the granular solid bed with respect to the rotational speed of the cylinder is presented both in graphical and numerical forms. The segregation behaviour of the granular solid bed with respect to particle size, density and volume fraction of particle size has been investigated. Several important macro parameters characterising segregation such as mixing index, percolation index and segregation index have been derived from the simulation tool based on first principles developed in this work.
Resumo:
During recent years, the theory of differential inequalities has been extensively used to discuss singular perturbation problems and method of lines to partial differential equations. The present thesis deals with some differential inequality theorems and their applications to singularly perturbed initial value problems, boundary value problems for ordinary differential equations in Banach space and initial boundary value problems for parabolic differential equations. The method of lines to parabolic and elliptic differential equations are also dealt The thesis is organised into nine chapters
Resumo:
Hindi