5 resultados para Isometric contractions

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis Entitled Biology of Decapod crustaceans in different Environmental conditions. Prawn culture is practiced in Kerala in two types of fields namely seasonal and perennial; In seasonal fields paddy is grown during the monsoon period and prawns are cultured during the rest of the year. when compared to seasonal fields; perennial fields are subjected to much fluctuations in its environmental characteristics. The perennial fields were found more productive than seasonal fields. The benthic production in perronial fields were almost double that of seasonal fields. But in the matter of species diversity both fields were equal. Seasonal changes were observéd in the species abundance of benthic organisms in both the seasonal and perennial fields. Both isometric and allometric growth were noticed in P. indicus .But during most of the months the growth was near to isometric. The condition of the prawn also fluctuated between better and poor.During most of the months the prawn in perennial fields wore in good condition while in the seasonal fields the condition changed from year to year. This indicates that the perennial field provides a better habitat for P. indicus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The median (antimedian) set of a profile π = (u1, . . . , uk) of vertices of a graphG is the set of vertices x that minimize (maximize) the remoteness i d(x,ui ). Two algorithms for median graphs G of complexity O(nidim(G)) are designed, where n is the order and idim(G) the isometric dimension of G. The first algorithm computes median sets of profiles and will be in practice often faster than the other algorithm which in addition computes antimedian sets and remoteness functions and works in all partial cubes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A profile on a graph G is any nonempty multiset whose elements are vertices from G. The corresponding remoteness function associates to each vertex x 2 V.G/ the sum of distances from x to the vertices in the profile. Starting from some nice and useful properties of the remoteness function in hypercubes, the remoteness function is studied in arbitrary median graphs with respect to their isometric embeddings in hypercubes. In particular, a relation between the vertices in a median graph G whose remoteness function is maximum (antimedian set of G) with the antimedian set of the host hypercube is found. While for odd profiles the antimedian set is an independent set that lies in the strict boundary of a median graph, there exist median graphs in which special even profiles yield a constant remoteness function. We characterize such median graphs in two ways: as the graphs whose periphery transversal number is 2, and as the graphs with the geodetic number equal to 2. Finally, we present an algorithm that, given a graph G on n vertices and m edges, decides in O.mlog n/ time whether G is a median graph with geodetic number 2

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The median of a profile = (u1, . . . , uk ) of vertices of a graph G is the set of vertices x that minimize the sum of distances from x to the vertices of . It is shown that for profiles with diameter the median set can be computed within an isometric subgraph of G that contains a vertex x of and the r -ball around x, where r > 2 − 1 − 2 /| |. The median index of a graph and r -joins of graphs are introduced and it is shown that r -joins preserve the property of having a large median index. Consensus strategies are also briefly discussed on a graph with bounded profiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The resurgence of the enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries like India. The southern Indian state of Kerala is endemic to cholera. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. Marine aquaculture settings and mangrove environments of Kerala serve as reservoirs for V. cholerae. The non-O1/non-O139 environmental isolates of V. cholerae with incomplete ‘virulence casette’ are to be dealt with caution as they constitute a major reservoir of diverse virulence genes in the marine environment and play a crucial role in pathogenicity and horizontal gene transfer. The genes coding cholera toxin are borne on, and can be infectiously transmitted by CTXΦ, a filamentous lysogenic vibriophages. Temperate phages can provide crucial virulence and fitness factors affecting cell metabolism, bacterial adhesion, colonization, immunity, antibiotic resistance and serum resistance. The present study was an attempt to screen the marine environments like aquafarms and mangroves of coastal areas of Alappuzha and Cochin, Kerala for the presence of lysogenic V. cholerae, to study their pathogenicity and also gene transfer potential. Phenotypic and molecular methods were used for identification of isolates as V. cholerae. The thirty one isolates which were Gram negative, oxidase positive, fermentative, with or without gas production on MOF media and which showed yellow coloured colonies on TCBS (Thiosulfate Citrate Bile salt Sucrose) agar were segregated as vibrios. Twenty two environmental V. cholerae strains of both O1 and non- O1/non-O139 serogroups on induction with mitomycin C showed the presence of lysogenic phages. They produced characteristic turbid plaques in double agar overlay assay using the indicator strain V. cholerae El Tor MAK 757. PCR based molecular typing with primers targeting specific conserved sequences in the bacterial genome, demonstrated genetic diversity among these lysogen containing non-O1 V. cholerae . Polymerase chain reaction was also employed as a rapid screening method to verify the presence of 9 virulence genes namely, ctxA, ctxB, ace, hlyA, toxR, zot,tcpA, ninT and nanH, using gene specific primers. The presence of tcpA gene in ALPVC3 was alarming, as it indicates the possibility of an epidemic by accepting the cholera. Differential induction studies used ΦALPVC3, ΦALPVC11, ΦALPVC12 and ΦEKM14, underlining the possibility of prophage induction in natural ecosystems, due to abiotic factors like antibiotics, pollutants, temperature and UV. The efficiency of induction of prophages varied considerably in response to the different induction agents. The growth curve of lysogenic V. cholerae used in the study drastically varied in the presence of strong prophage inducers like antibiotics and UV. Bacterial cell lysis was directly proportional to increase in phage number due to induction. Morphological characterization of vibriophages by Transmission Electron Microscopy revealed hexagonal heads for all the four phages. Vibriophage ΦALPVC3 exhibited isometric and contractile tails characteristic of family Myoviridae, while phages ΦALPVC11 and ΦALPVC12 demonstrated the typical hexagonal head and non-contractile tail of family Siphoviridae. ΦEKM14, the podophage was distinguished by short non-contractile tail and icosahedral head. This work demonstrated that environmental parameters can influence the viability and cell adsorption rates of V. cholerae phages. Adsorption studies showed 100% adsorption of ΦALPVC3 ΦALPVC11, ΦALPVC12 and ΦEKM14 after 25, 30, 40 and 35 minutes respectively. Exposure to high temperatures ranging from 50ºC to 100ºC drastically reduced phage viability. The optimum concentration of NaCl required for survival of vibriophages except ΦEKM14 was 0.5 M and that for ΦEKM14 was 1M NaCl. Survival of phage particles was maximum at pH 7-8. V. cholerae is assumed to have existed long before their human host and so the pathogenic clones may have evolved from aquatic forms which later colonized the human intestine by progressive acquisition of genes. This is supported by the fact that the vast majority of V. cholerae strains are still part of the natural aquatic environment. CTXΦ has played a critical role in the evolution of the pathogenicity of V. cholerae as it can transmit the ctxAB gene. The unusual transformation of V. cholerae strains associated with epidemics and the emergence of V. cholera O139 demonstrates the evolutionary success of the organism in attaining greater fitness. Genetic changes in pathogenic V. cholerae constitute a natural process for developing immunity within an endemically infected population. The alternative hosts and lysogenic environmental V. cholerae strains may potentially act as cofactors in promoting cholera phage ‘‘blooms’’ within aquatic environments, thereby influencing transmission of phage sensitive, pathogenic V. cholerae strains by aquatic vehicles. Differential induction of the phages is a clear indication of the impact of environmental pollution and global changes on phage induction. The development of molecular biology techniques offered an accessible gateway for investigating the molecular events leading to genetic diversity in the marine environment. Using nucleic acids as targets, the methods of fingerprinting like ERIC PCR and BOX PCR, revealed that the marine environment harbours potentially pathogenic group of bacteria with genetic diversity. The distribution of virulence associated genes in the environmental isolates of V. cholerae provides tangible material for further investigation. Nucleotide and protein sequence analysis alongwith protein structure prediction aids in better understanding of the variation inalleles of same gene in different ecological niche and its impact on the protein structure for attaining greater fitness of pathogens. The evidences of the co-evolution of virulence genes in toxigenic V. cholerae O1 from different lineages of environmental non-O1 strains is alarming. Transduction studies would indicate that the phenomenon of acquisition of these virulence genes by lateral gene transfer, although rare, is not quite uncommon amongst non-O1/non-O139 V. cholerae and it has a key role in diversification. All these considerations justify the need for an integrated approach towards the development of an effective surveillance system to monitor evolution of V. cholerae strains with epidemic potential. Results presented in this study, if considered together with the mechanism proposed as above, would strongly suggest that the bacteriophage also intervenes as a variable in shaping the cholera bacterium, which cannot be ignored and hinting at imminent future epidemics.