5 resultados para Isolation-by-resistance

em Cochin University of Science


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study Molecular genetic characterization of endemic yellow catfish ,generated an important information on the genetic variation and stock structure of the endangered yellow catfish(Horabagrus brachysoma) endemic to the western Ghats. Three genetically discrete stocks of the species have been identified for the first time using allozymes, RAPD(Random Amplified Polymorphic DNA) and microsatelite markers and it is a significant step towards realizing the goal of management of fishery and conservation of the yellow catfish populations in the rivers of the Western Ghats region. In conclusion genetic markers were found to be powerful tools to analyze the population genetic structure of the yellow catfish. Geographic isolation by land distance,inbreading as a result of over-exploitation etc are some reasons for the genetic differenciation between the pairs and deficiency of hetrozygosity revealed by the two co dominant markers, allozyme, and microsatelites.the study emphasizes the need for stock-wise, propagation assisted-rehabilitation of the natural populations yellow catfish

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The family Cyprinidae is the largest of freshwater fishes and, with the possible exception of Gobiidae, the largest family of vertebrates.Various members of this family are important as food fish, as aquarium fish, and in biological research. In this study, a fish species from this family exclusively found in the west flowing rivers originating from the Western Ghat region — Gonoproktopterus curmuca — was taken for population genetic analysis.There was an urgent need for restoration ecology by the development of apt management strategies to exploit resources judiciously. One of the strategies thus developed for the scientific management of these resources was to identify the natural units of the fishery resources under exploitation (Altukov, 1981). These natural units of a species can otherwise be called as stocks. A stock can be defined as a panmictic population of related individuals within a single species that is genetically distinct from other such populations.It is believed that a species may undergo micro evolutionary process and differentiate into genetically distinct sub-populations or stocks in course of time, if reproductively and geographically isolated.In recent times, there has been a wide spread degradation of natural aquatic environment due to anthropogenic activities and this has resulted in the decline and even extinction of some fish species. In such situations, evaluation of the genetic diversity of fish resources assumes important to conservation.The species selected for the study, was short-listed as one of the candidates for stock-specific, propagation assisted rehabilitation and management programme in rivers where it is naturally distributed. In connection with this, captive breeding and milt cryopreservation techniques of the species have been developed by the National Bureau of Fish Genetic Resources, Lucknow. However, for a scientific stock-specific rehabilitation programme, information on the stock structure and basic genetic profile of the species are essential and that is not available in case of G. curmuca. So the present work was taken up to identify molecular genetic markers like allozymes, microsatellites and RAPDs and, to use these markers to discriminate the distinct populations of the species, if any, in areas of its natural distribution. The genetic markers were found to be powerful tools to analyze the population genetic structure of the red-tailed barb and demonstrated clear cut genetic differentiation between pairs of populations examined. Geographic isolation by land distance is likely to be the factor that contributed to the restricted gene flow between the river systems. So the present study emphasizes the need for stock-wise, propagation assisted-rehabilitation of the natural populations of red-tailed barb, Gonoprokfopterus curmuca.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This Study pertains to the law relating to admission in minority educational institutions in India. This is an area which needs certainty. Every year, admissions to various institutions are challenged. The future of umpteen number of students are at stake. Only when clarity with regard to the nature of the rights and conditions to be fulfilled to get the rights are made, conflicts can be prevented. Awareness in this area has to be developed. Considering the peculiar nature of rights provided under Article 30 to the minorities, there is an argument that Article 30 is absolute in nature and restrictions on this right can be only in the interests of the minorities. But there is also a counter argument that minority rights are not absolute and that all rights are absolute only to the extent of their logical extreme. Thus reasonable restrictions can be placed over Article 30. The Legal framework is not comprehensive and conflicting judicial responses add to the dilemma. Legal frame work has pitfalls which creates confusions. Though there are decisions by the highest court of the land regarding admission rights, various parts of the decisions are quoted in isolation by interested parties to assert their sides. Many States try to frame legislations regulating admissions inspired by the judicial pronouncements, which are later declared as violative of minority rights and held unconstitutional. This state of affairs has prompted me to select this area as the subject for study. Study is an analysis for a better regime of law relating to admissions in minority educational institutions in India balancing the interests of various stakeholders viz. minority and non minority educational institutions, both professional and elementary, students, parents and the State.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

While the seriousness of the problem of antibiotic resistance is now recognized, the complex web of resistance linking humans, animals, and the environment is getting realized. More often, antibiotics are used as a preventive measure against diseases. Antibiotic use for agriculture leads to the increased resistance in the environment since antibiotics are inevitable element during agriculture/aquaculture and antibiotic residues are excreted as waste that is frequently spread onto farmland as organic fertilizer. Fecal bacteria survive long periods in the environment and spread through runoff into groundwater, rivers, and marine ecosystems.However, horizontal gene transfer occurs in the animals and guts of humans and in a variety of ecosystems, creating a pool of resistance in the rice fields and open waters. Even if people are not in direct contact with resistant disease through food animals, there are chances of contact with resistant fecal pathogens from the environment. Additionally, pathogens that are autochthonous to the environment can acquire resistance genes from the environment. Our study revealed that autochthonous , bacteria Vibrio spp gained antibiotic resistance in the environment. Further, it was evident that horizontal gene transfer occurs in Vibrio by means of plasmids, which further augments the gravity of the problem. Non-pathogenic bacteria may also acquire resistance genes and serve as a continuing source of resistance for other bacteria, both in the environment, and in the human gut. As the effectiveness of antibiotics for medical applications decline, the indiscriminate use of in aquaculture and in humans can have disastrous conditions in future due to horizontal gene transfer and the spread of resistant organisms: We must recognize and deal with the threat posed by overuse of antibiotics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The resurgence of the enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries like India. The southern Indian state of Kerala is endemic to cholera. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. Marine aquaculture settings and mangrove environments of Kerala serve as reservoirs for V. cholerae. The non-O1/non-O139 environmental isolates of V. cholerae with incomplete ‘virulence casette’ are to be dealt with caution as they constitute a major reservoir of diverse virulence genes in the marine environment and play a crucial role in pathogenicity and horizontal gene transfer. The genes coding cholera toxin are borne on, and can be infectiously transmitted by CTXΦ, a filamentous lysogenic vibriophages. Temperate phages can provide crucial virulence and fitness factors affecting cell metabolism, bacterial adhesion, colonization, immunity, antibiotic resistance and serum resistance. The present study was an attempt to screen the marine environments like aquafarms and mangroves of coastal areas of Alappuzha and Cochin, Kerala for the presence of lysogenic V. cholerae, to study their pathogenicity and also gene transfer potential. Phenotypic and molecular methods were used for identification of isolates as V. cholerae. The thirty one isolates which were Gram negative, oxidase positive, fermentative, with or without gas production on MOF media and which showed yellow coloured colonies on TCBS (Thiosulfate Citrate Bile salt Sucrose) agar were segregated as vibrios. Twenty two environmental V. cholerae strains of both O1 and non- O1/non-O139 serogroups on induction with mitomycin C showed the presence of lysogenic phages. They produced characteristic turbid plaques in double agar overlay assay using the indicator strain V. cholerae El Tor MAK 757. PCR based molecular typing with primers targeting specific conserved sequences in the bacterial genome, demonstrated genetic diversity among these lysogen containing non-O1 V. cholerae . Polymerase chain reaction was also employed as a rapid screening method to verify the presence of 9 virulence genes namely, ctxA, ctxB, ace, hlyA, toxR, zot,tcpA, ninT and nanH, using gene specific primers. The presence of tcpA gene in ALPVC3 was alarming, as it indicates the possibility of an epidemic by accepting the cholera. Differential induction studies used ΦALPVC3, ΦALPVC11, ΦALPVC12 and ΦEKM14, underlining the possibility of prophage induction in natural ecosystems, due to abiotic factors like antibiotics, pollutants, temperature and UV. The efficiency of induction of prophages varied considerably in response to the different induction agents. The growth curve of lysogenic V. cholerae used in the study drastically varied in the presence of strong prophage inducers like antibiotics and UV. Bacterial cell lysis was directly proportional to increase in phage number due to induction. Morphological characterization of vibriophages by Transmission Electron Microscopy revealed hexagonal heads for all the four phages. Vibriophage ΦALPVC3 exhibited isometric and contractile tails characteristic of family Myoviridae, while phages ΦALPVC11 and ΦALPVC12 demonstrated the typical hexagonal head and non-contractile tail of family Siphoviridae. ΦEKM14, the podophage was distinguished by short non-contractile tail and icosahedral head. This work demonstrated that environmental parameters can influence the viability and cell adsorption rates of V. cholerae phages. Adsorption studies showed 100% adsorption of ΦALPVC3 ΦALPVC11, ΦALPVC12 and ΦEKM14 after 25, 30, 40 and 35 minutes respectively. Exposure to high temperatures ranging from 50ºC to 100ºC drastically reduced phage viability. The optimum concentration of NaCl required for survival of vibriophages except ΦEKM14 was 0.5 M and that for ΦEKM14 was 1M NaCl. Survival of phage particles was maximum at pH 7-8. V. cholerae is assumed to have existed long before their human host and so the pathogenic clones may have evolved from aquatic forms which later colonized the human intestine by progressive acquisition of genes. This is supported by the fact that the vast majority of V. cholerae strains are still part of the natural aquatic environment. CTXΦ has played a critical role in the evolution of the pathogenicity of V. cholerae as it can transmit the ctxAB gene. The unusual transformation of V. cholerae strains associated with epidemics and the emergence of V. cholera O139 demonstrates the evolutionary success of the organism in attaining greater fitness. Genetic changes in pathogenic V. cholerae constitute a natural process for developing immunity within an endemically infected population. The alternative hosts and lysogenic environmental V. cholerae strains may potentially act as cofactors in promoting cholera phage ‘‘blooms’’ within aquatic environments, thereby influencing transmission of phage sensitive, pathogenic V. cholerae strains by aquatic vehicles. Differential induction of the phages is a clear indication of the impact of environmental pollution and global changes on phage induction. The development of molecular biology techniques offered an accessible gateway for investigating the molecular events leading to genetic diversity in the marine environment. Using nucleic acids as targets, the methods of fingerprinting like ERIC PCR and BOX PCR, revealed that the marine environment harbours potentially pathogenic group of bacteria with genetic diversity. The distribution of virulence associated genes in the environmental isolates of V. cholerae provides tangible material for further investigation. Nucleotide and protein sequence analysis alongwith protein structure prediction aids in better understanding of the variation inalleles of same gene in different ecological niche and its impact on the protein structure for attaining greater fitness of pathogens. The evidences of the co-evolution of virulence genes in toxigenic V. cholerae O1 from different lineages of environmental non-O1 strains is alarming. Transduction studies would indicate that the phenomenon of acquisition of these virulence genes by lateral gene transfer, although rare, is not quite uncommon amongst non-O1/non-O139 V. cholerae and it has a key role in diversification. All these considerations justify the need for an integrated approach towards the development of an effective surveillance system to monitor evolution of V. cholerae strains with epidemic potential. Results presented in this study, if considered together with the mechanism proposed as above, would strongly suggest that the bacteriophage also intervenes as a variable in shaping the cholera bacterium, which cannot be ignored and hinting at imminent future epidemics.