14 resultados para Iron-fines
em Cochin University of Science
Resumo:
The thesis entitled INVESTIDGATIONS ON THE RECOVERY OF TITANIUM VANADIUM AND IRON VALUES FROM THE WASTE CHILORIDE LIQUORS OF TITANIA INDUSTRY embodies the results of the investigations carried out on the solvent extraction separation of iron (III) vanadium(V) and titanium (IV) chlorides from the waste chloride liquors of titanium minerals processing industry by employing tributylphosphate (TBT) as an extractant. The objective of this study is to generate the knowledge base to achieve the recovery of iron, vanadium and titanium cvalues from multi- metal waste chloride liquors originating from ilmenite mineral beneficiation industries through selective separation and value added material development
Resumo:
Chemical bath deposition (CBD)is one of the simplest, very convient and probably the cheapest method for thin film preparation. Photovoltaic is the cleanest and the most efficient mode of conversion of energy to electrical power. Silicon is the most popular material in this field. The present study on chemical bath deposited semiconducting copper selenide and iron sulfide thin films useful for photovoltaic applications. Semiconducting thin films prepared by chemical deposition find applications as photo detectors, solar control coatings and solar cells. Copper selenide is a p-type semiconductor that finds application in photovolitics. Several heterojunction systems such as Cu2-xSe/ZnSe (for injection electro luminescence), Cu2Se/AgInSe2 and Cu2Se/Si (for photodiodes), Cu2-xSe/CdS, Cu2-xSe/CdSe, CuxSe/InP and Cu2-xSe/Si for solar cells are reported. A maximum efficiency of 8.3% was achieved for the Cu2-xSe/Si cell, various preparation techniques are used for copper selenide like vacuum evaporation, direct reaction, electrodeposition and CBD. Instability of the as-prepared films was investigation and is accounted as mainly due to deviation from stoichiometry and the formation of iron oxide impurity. A sulphur annealing chamber was designed and fabricated for this work. These samples wee also analysed using optical absorption technique, XPS (X-ray Photoelectron Spectroscopy) and XRD.(X-Ray Diffraction).The pyrite films obtained by CBD technique showed amorphous nature and the electrical studies carried out showed the films to be of high resistive nature. Future work possible in the material of iron pyrite includes sulphur annealing of the non-stochiometric iron pyrite CBD thin films in the absence of atmospheric oxygen
Resumo:
The current water treatment technology is oriented towards the removal of contaminants, mostly organic compounds, by activated carbon. Activated carbons are classified as Granular Activated Carbons (GAC) and Powdered Activated Carbons (PAC) on the basis of the particle size of the carbon granules. Powdered carbons are generally less expensive than granular carbon, operating costs with powdered carbon could be lower. Though powdered activated carbon has many advantages over granular carbon, its application in large-scale separation process is limited by difficulty in recovery and regeneration. Deposition of magnetic iron oxide on carbon particles provides a convenient way of recovering the spent carbon from process water. The study deals with the preparation and physico-chemical characterization of magnetic iron oxide loaded activated carbons. The evaluation of absorption properties of magnetic iron oxide loaded activated carbon composites. The target molecules studied were phenol, p-nitro phenol and methylene blue. The feasibility of magnetic separation of iron oxide loaded activated carbons were studied and described in this thesis.
Resumo:
Iron pillared Montmorillonite has been synthesised and it is then wet impregnated with vanadia with different vanadia composition. These catalysts are characterised using conventional techniques such as XRD analysis,FTIR analysis and surface area and pore volume measurements. Acidity is measured using spectrophotometric monitoring of adsorption of perylene, thermogravimetric desorption of 2.6 dimethylpyridine and temperature programmed desorption of ammonia. Activity studies are done in the liquid phase. It has been concluded that Lewis acidic sites are responsible for the benzylation of toluene when the benzylating agent is benzyl chloride while Bronsted acidic sites are responsible when the reagent is benzyl alcohol.
Resumo:
The present work investigates on the applicability of metal promoted sulphated zirconia catalysts for the hydroxylation of phenol under mild conditions. The percentage conversion and product distribution was highly sensitive towards the reaction parameters like the catalyst composition, reaction temperature, H202/ phenol ratio and the solvent used.
Resumo:
The present work undertakes the preparation and physico-chemical characterisation of iron promoted sulphated zirconia (SZ) with different amounts of iron loading and their application to Friedel-Crafts benzoylation of benzene, toluene and xylene under different experimental conditions, XRD and laser Raman techniques reveal the stabilisation of the tetragonal phase of zirconia and the existence of iron in highly dispersed form as Fe203 on the catalyst surface. The surface acidic properties were determined by ammonia temperature programmed desorption (TPD) and perylene adsorption, The results were supported by the TGA studies after adsorption of pyridine and 2,6-dimethylpyridine (2,6-DMP), Strong Lewis acid sites on the surface, which are evident from TPD and perylene adsorption studies. explain the high catalytic activity of the systems towards benzoylation. The experimental results provide evidence for the truly heterogeneous nature of the reaction. The studies also establish the resistance to deactivation in the metal incorporated sulphated systems.
Resumo:
Department of Physics, Cochin University of Science & Technology
Resumo:
This thesis Entitled Colour removal from dye house effluents using zero valent iron and fenton oxidation.Findings reported on kinetic profile during oxidation of dyes with Fenton’s reagent are in good agreement with observations of earlier workers on other organic substrates. This work goes a step further. Critical concentration of the dye at which the reaction mechanism undergoes transition has been identified.The oxidation of Reactive Yellow showed that the initial rates for decolorization increased linearly with an increase in hydrogen peroxide concentration over the range studied. Fenton oxidation of all dyes except Methylene Blue showed that the initial rates increased linearly with an in the ferrous sulphate concentration. This increase was observed only up to an optimum concentration beyond which further increase resulted in a decrease in the initial rates. Variation of initial rates with Ferrous sulphate concentration resulted in a linear plot passing through the origin indicating that the reaction is first order with respect to ferrous sulphate.
Resumo:
Multiwall carbon nanotubes (MWCNTs) possessing an average inner diameter of 150 nm were synthesized by template assisted chemical vapor deposition over an alumina template. Aqueous ferrofluid based on superparamagnetic iron oxide nanoparticles (SPIONs) was prepared by a controlled co-precipitation technique, and this ferrofluid was used to fill the MWCNTs by nanocapillarity. The filling of nanotubes with iron oxide nanoparticles was confirmed by electron microscopy. Selected area electron diffraction indicated the presence of iron oxide and graphitic carbon from MWCNTs. The magnetic phase transition during cooling of the MWCNT–SPION composite was investigated by low temperature magnetization studies and zero field cooled (ZFC) and field cooled experiments. The ZFC curve exhibited a blocking at ∼110 K. A peculiar ferromagnetic ordering exhibited by the MWCNT–SPION composite above room temperature is because of the ferromagnetic interaction emanating from the clustering of superparamagnetic particles in the constrained volume of an MWCNT. This kind of MWCNT–SPION composite can be envisaged as a good agent for various biomedical applications
Resumo:
Nano magnetic oxides are promising candidates for high density magnetic storage and other applications. Nonspherical mesoscopic iron oxide particles are also candidate materials for studying the shape, size and strain induced modifications of various physical properties viz. optical, magnetic and structural. Spherical and nonspherical iron oxides having an aspect ratio, ~2, are synthesized by employing starch and ethylene glycol and starch and water, respectively by a novel technique. Their optical, structural, thermal and magnetic properties are evaluated. A red shift of 0⋅24 eV is observed in the case of nonspherical particles when compared to spherical ones. The red shift is attributed to strain induced changes in internal pressure inside the elongated iron oxide particles. Pressure induced effects are due to the increased overlap of wave functions. Magnetic measurements reveal that particles are superparamagnetic. The marked increase in coercivity in the case of elongated particles is a clear evidence for shape induced anisotropy. The decreased specific saturation magnetization of the samples is explained on the basis of weight percentage of starch, a nonmagnetic component and is verified by TGA and FTIR studies. This technique can be modified for tailoring the aspect ratio and these particles are promising candidates for drug delivery and contrast enhancement agents in magnetic resonance imaging
Resumo:
Multimodal imaging agents that combine magnetic and fluorescent imaging capabilities are desirable for the high spatial and temporal resolution. In the present work, we report the synthesis of multifunctional fluorescent ferrofluids using iron oxide as the magnetic core and rhodamine B as fluorochrome shell. The core–shell structure was designed in such a way that fluorescence quenching due to the inner magnetic core was minimized by an intermediate layer of silica. The intermediate passive layer of silica was realized by a novel method which involves the esterification reaction between the epoxy group of prehydrolysed 3-Glyidoxypropyltrimethoxysilane and the surfactant over iron oxide. The as-synthesized ferrofluids have a high saturation magnetization in the range of 62–65 emu/g and were found to emit light of wavelength 640 nm ( excitation = 446 nm). Time resolved life time decay analysis showed a bi-exponential decay pattern with an increase in the decay life time in the presence of intermediate silica layer. Cytotoxicity studies confirmed the cell viability of these materials. The in vitro MRI imaging illustrated a high contrast when these multimodal nano probes were employed and the R2 relaxivity of these ∗Author to whom correspondence should be addressed. Email: smissmis@gmail.com sample was found to be 334 mM−1s−1 which reveals its high potential as a T2 contrast enhancing agent
Resumo:
Commercial samples of Magnetite with size ranging from 25–30nm were coated with polyaniline by using radio frequency plasma polymerization to achieve a core shell structure of magnetic nanoparticle (core)–Polyaniline (shell). High resolution transmission electron microscopy images confirm the core shell architecture of polyaniline coated iron oxide. The dielectric properties of the material were studied before and after plasma treatment. The polymer coated magnetite particles exhibited a large dielectric permittivity with respect to uncoated samples. The dielectric behavior was modeled using a Maxwell–Wagner capacitor model. A plausible mechanism for the enhancement of dielectric permittivity is proposed
Resumo:
The present work derives motivation from the so called surface/interfacial magnetism in core shell structures and commercial samples of Fe3O4 and c Fe2O3 with sizes ranging from 20 to 30 nm were coated with polyaniline using plasma polymerization and studied. The High Resolution Transmission Electron Microscopy images indicate a core shell structure after polyaniline coating and exhibited an increase in saturation magnetization by 2 emu/g. For confirmation, plasma polymerization was performed on maghemite nanoparticles which also exhibited an increase in saturation magnetization. This enhanced magnetization is rather surprising and the reason is found to be an interfacial phenomenon resulting from a contact potential.