2 resultados para International Academic Research
em Cochin University of Science
Resumo:
Sonar signal processing comprises of a large number of signal processing algorithms for implementing functions such as Target Detection, Localisation, Classification, Tracking and Parameter estimation. Current implementations of these functions rely on conventional techniques largely based on Fourier Techniques, primarily meant for stationary signals. Interestingly enough, the signals received by the sonar sensors are often non-stationary and hence processing methods capable of handling the non-stationarity will definitely fare better than Fourier transform based methods.Time-frequency methods(TFMs) are known as one of the best DSP tools for nonstationary signal processing, with which one can analyze signals in time and frequency domains simultaneously. But, other than STFT, TFMs have been largely limited to academic research because of the complexity of the algorithms and the limitations of computing power. With the availability of fast processors, many applications of TFMs have been reported in the fields of speech and image processing and biomedical applications, but not many in sonar processing. A structured effort, to fill these lacunae by exploring the potential of TFMs in sonar applications, is the net outcome of this thesis. To this end, four TFMs have been explored in detail viz. Wavelet Transform, Fractional Fourier Transfonn, Wigner Ville Distribution and Ambiguity Function and their potential in implementing five major sonar functions has been demonstrated with very promising results. What has been conclusively brought out in this thesis, is that there is no "one best TFM" for all applications, but there is "one best TFM" for each application. Accordingly, the TFM has to be adapted and tailored in many ways in order to develop specific algorithms for each of the applications.
Resumo:
A profile is a finite sequence of vertices of a graph. The set of all vertices of the graph which minimises the sum of the distances to the vertices of the profile is the median of the profile. Any subset of the vertex set such that it is the median of some profile is called a median set. The number of median sets of a graph is defined to be the median number of the graph. In this paper, we identify the median sets of various classes of graphs such as Kp − e, Kp,q forP > 2, and wheel graph and so forth. The median numbers of these graphs and hypercubes are found out, and an upper bound for the median number of even cycles is established.We also express the median number of a product graph in terms of the median number of their factors.