5 resultados para Interlaminar shear

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary aim of the present study is to acquire a large amount of gravity data, to prepare gravity maps and interpret the data in terms of crustal structure below the Bavali shear zone and adjacent regions of northern Kerala. The gravity modeling is basically a tool to obtain knowledge of the subsurface extension of the exposed geological units and their structural relationship with the surroundings. The study is expected to throw light on the nature of the shear zone, crustal configuration below the high-grade granulite terrain and the tectonics operating during geological times in the region. The Bavali shear is manifested in the gravity profiles by a steep gravity gradient. The gravity models indicate that the Bavali shear coincides with steep plane that separates two contrasting crustal densities extending beyond a depth of 30 km possibly down to Moho, justifying it to be a Mantle fault. It is difficult to construct a generalized model of crustal evolution in terms of its varied manifestations using only the gravity data. However, the data constrains several aspects of crustal evolution and provides insights into some of the major events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel approach to computing the orientation moments and rheological properties of a dilute suspension of spheroids in a simple shear flow at arbitrary Peclct number based on a generalised Langevin equation method. This method differs from the diffusion equation method which is commonly used to model similar systems in that the actual equations of motion for the orientations of the individual particles are used in the computations, instead of a solution of the diffusion equation of the system. It also differs from the method of 'Brownian dynamics simulations' in that the equations used for the simulations are deterministic differential equations even in the presence of noise, and not stochastic differential equations as in Brownian dynamics simulations. One advantage of the present approach over the Fokker-Planck equation formalism is that it employs a common strategy that can be applied across a wide range of shear and diffusion parameters. Also, since deterministic differential equations are easier to simulate than stochastic differential equations, the Langevin equation method presented in this work is more efficient and less computationally intensive than Brownian dynamics simulations.We derive the Langevin equations governing the orientations of the particles in the suspension and evolve a procedure for obtaining the equation of motion for any orientation moment. A computational technique is described for simulating the orientation moments dynamically from a set of time-averaged Langevin equations, which can be used to obtain the moments when the governing equations are harder to solve analytically. The results obtained using this method are in good agreement with those available in the literature.The above computational method is also used to investigate the effect of rotational Brownian motion on the rheology of the suspension under the action of an external force field. The force field is assumed to be either constant or periodic. In the case of con- I stant external fields earlier results in the literature are reproduced, while for the case of periodic forcing certain parametric regimes corresponding to weak Brownian diffusion are identified where the rheological parameters evolve chaotically and settle onto a low dimensional attractor. The response of the system to variations in the magnitude and orientation of the force field and strength of diffusion is also analyzed through numerical experiments. It is also demonstrated that the aperiodic behaviour exhibited by the system could not have been picked up by the diffusion equation approach as presently used in the literature.The main contributions of this work include the preparation of the basic framework for applying the Langevin method to standard flow problems, quantification of rotary Brownian effects by using the new method, the paired-moment scheme for computing the moments and its use in solving an otherwise intractable problem especially in the limit of small Brownian motion where the problem becomes singular, and a demonstration of how systems governed by a Fokker-Planck equation can be explored for possible chaotic behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the details of the finite element analysis of eleven shear critical partially prestressed concrete T-beams having steel fibers over partial or full depth. Prestressed T-beams having a shear span to depth ratio of 2.65 and 1.59 that failed in shear have been analyzed using the ‘ANSYS’ program. The ‘ANSYS’ model accounts for the nonlinearity, such as, bond-slip of longitudinal reinforcement, postcracking tensile stiffness of the concrete, stress transfer across the cracked blocks of the concrete and load sustenance through the bridging action of steel fibers at crack interface. The concrete is modeled using ‘SOLID65’- eight-node brick element, which is capable of simulating the cracking and crushing behavior of brittle materials. The reinforcement such as deformed bars, prestressing wires and steel fibers have been modeled discretely using ‘LINK8’ – 3D spar element. The slip between the reinforcement (rebars, fibers) and the concrete has been modeled using a ‘COMBIN39’- nonlinear spring element connecting the nodes of the ‘LINK8’ element representing the reinforcement and nodes of the ‘SOLID65’ elements representing the concrete. The ‘ANSYS’ model correctly predicted the diagonal tension failure and shear compression failure of prestressed concrete beams observed in the experiment. The capability of the model to capture the critical crack regions, loads and deflections for various types of shear failures in prestressed concrete beam has been illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper gives the details of flexure-shear analysis of concrete beams reinforced with GFRP rebars. The influence of vertical reinforcement ratio, longitudinal reinforcement ratio and compressive strength of concrete on shear strength of GFRP reinforced concrete beam is studied. The critical value of shear span to depth ratio (a/d) at which the mode of failure changes from flexure to shear is studied. The fail-ure load of the beam is predicted for various values of a/d ratio. The prediction show that the longitudinally FRP reinforced concrete beams having no stirrups fail in shear for a/d ratio less than 9.0. It is expected that the predicted data is useful for structural engineers to design the FRP reinforced concrete members.