4 resultados para Intensity parameters

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The measurement of global precipitation is of great importance in climate modeling since the release of latent heat associated with tropical convection is one of the pricipal driving mechanisms of atmospheric circulation.Knowledge of the larger-scale precipitation field also has important potential applications in the generation of initial conditions for numerical weather prediction models Knowledge of the relationship between rainfall intensity and kinetic energy, and its variations in time and space is important for erosion prediction. Vegetation on earth also greatly depends on the total amount of rainfall as well as the drop size distribution (DSD) in rainfall.While methods using visible,infrared, and microwave radiometer data have been shown to yield useful estimates of precipitation, validation of these products for the open ocean has been hampered by the limited amount of surface rainfall measurements available for accurate assessement, especially for the tropical oceans.Surface rain fall measurements(often called the ground truth)are carried out by rain gauges working on various principles like weighing type,tipping bucket,capacitive type and so on.The acoustic technique is yet another promising method of rain parameter measurement that has many advantages. The basic principle of acoustic method is that the droplets falling in water produce underwater sound with distinct features, using which the rainfall parameters can be computed. The acoustic technique can also be used for developing a low cost and accurate device for automatic measurement of rainfall rate and kinetic energy of rain.especially suitable for telemetry applications. This technique can also be utilized to develop a low cost Disdrometer that finds application in rainfall analysis as well as in calibration of nozzles and sprinklers. This thesis is divided into the following 7 chapters, which describes the methodology adopted, the results obtained and the conclusions arrived at.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical cyclones genesis, movement and intensification are highly dependent on its environment both oceanic and atmospheric. This thesis has made a detailed study on the environmental factors related to tropical cyclones of North Indian Ocean basin. This ocean basin has produced only 6% of the global tropical cyclones annually but it has caused maximum loss of human life associated with the strong winds, heavy rain and particularly storm surges that accompany severe cyclones as they strike the heavily populated coastal areas. Atmospheric factors studied in the thesis are the moisture content of the atmosphere, instability of the atmosphere that produces thunderstorms which are the main source of energy for the tropical cyclone, vertical wind shear to which cyclones are highly sensitive and the Sub-Tropical westerly Jetsteram and its Asian high speed center. The oceanic parameters studied are sea surface temperature and heat storage in the top layer of the ocean. A major portion of the thesis has dealt with the three temporal variabilities of tropical cyclone frequency namely intra-seasonal (mainly the influence of Madden Julian Oscillation), inter- annual (the relation with El Nino Southern Oscillation) and decadal variabilities. Regarding decadal variability, a prominent four decade oscillation in the frequency of both tropical cyclones and monsoon depressions unique to the Indian Ocean basin has been brought out. The thesis consists of 9 chapters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric surface boundary layer parameters vary anomalously in response to the occurrence of annular solar eclipse on 15th January 2010 over Cochin. It was the longest annular solar eclipse occurred over South India with high intensity. As it occurred during the noon hours, it is considered to be much more significant because of its effects in all the regions of atmosphere including ionosphere. Since the insolation is the main driving factor responsible for the anomalous changes occurred in the surface layer due to annular solar eclipse, occurred on 15th January 2010, that played very important role in understanding dynamics of the atmosphere during the eclipse period because of its coincidence with the noon time. The Sonic anemometer is able to give data of zonal, meridional and vertical wind as well as the air temperature at a temporal resolution of 1 s. Different surface boundary layer parameters and turbulent fluxes were computed by the application of eddy correlation technique using the high resolution station data. The surface boundary layer parameters that are computed using the sonic anemometer data during the period are momentum flux, sensible heat flux, turbulent kinetic energy, frictional velocity (u*), variance of temperature, variances of u, v and w wind. In order to compare the results, a control run has been done using the data of previous day as well as next day. It is noted that over the specified time period of annular solar eclipse, all the above stated surface boundary layer parameters vary anomalously when compared with the control run. From the observations we could note that momentum flux was 0.1 Nm 2 instead of the mean value 0.2 Nm-2 when there was eclipse. Sensible heat flux anomalously decreases to 50 Nm 2 instead of the mean value 200 Nm 2 at the time of solar eclipse. The turbulent kinetic energy decreases to 0.2 m2s 2 from the mean value 1 m2s 2. The frictional velocity value decreases to 0.05 ms 1 instead of the mean value 0.2 ms 1. The present study aimed at understanding the dynamics of surface layer in response to the annular solar eclipse over a tropical coastal station, occurred during the noon hours. Key words: annular solar eclipse, surface boundary layer, sonic anemometer

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the technologies for the fabrication of high quality microarray advances rapidly, quantification of microarray data becomes a major task. Gridding is the first step in the analysis of microarray images for locating the subarrays and individual spots within each subarray. For accurate gridding of high-density microarray images, in the presence of contamination and background noise, precise calculation of parameters is essential. This paper presents an accurate fully automatic gridding method for locating suarrays and individual spots using the intensity projection profile of the most suitable subimage. The method is capable of processing the image without any user intervention and does not demand any input parameters as many other commercial and academic packages. According to results obtained, the accuracy of our algorithm is between 95-100% for microarray images with coefficient of variation less than two. Experimental results show that the method is capable of gridding microarray images with irregular spots, varying surface intensity distribution and with more than 50% contamination