4 resultados para Input and outputs

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rice is the most extensively cultivated crop in the world, particularly concentrated in Asia and the Far East. Asian countries together make up for as much as 91.80 per cent of the world production of rice in 1986. The main objective of the present study is to analyse the rice economy of Kerala over time and space at the State, district and taluk level. The thesis analyses the trends in area, yield and total production of rice during the three seasons in the state, districts and taluks and studies the trends in input and output prices of rice and coconut in the state, districts and taluks. The researcher estimates the impact of input and output prices on area, yield and total output of rice in the state, districts and selected taluks and examines the conversion of paddy field into coconut garden and rubber plantation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neural Network has emerged as the topic of the day. The spectrum of its application is as wide as from ECG noise filtering to seismic data analysis and from elementary particle detection to electronic music composition. The focal point of the proposed work is an application of a massively parallel connectionist model network for detection of a sonar target. This task is segmented into: (i) generation of training patterns from sea noise that contains radiated noise of a target, for teaching the network;(ii) selection of suitable network topology and learning algorithm and (iii) training of the network and its subsequent testing where the network detects, in unknown patterns applied to it, the presence of the features it has already learned in. A three-layer perceptron using backpropagation learning is initially subjected to a recursive training with example patterns (derived from sea ambient noise with and without the radiated noise of a target). On every presentation, the error in the output of the network is propagated back and the weights and the bias associated with each neuron in the network are modified in proportion to this error measure. During this iterative process, the network converges and extracts the target features which get encoded into its generalized weights and biases.In every unknown pattern that the converged network subsequently confronts with, it searches for the features already learned and outputs an indication for their presence or absence. This capability for target detection is exhibited by the response of the network to various test patterns presented to it.Three network topologies are tried with two variants of backpropagation learning and a grading of the performance of each combination is subsequently made.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The focus of this paper is to develop computationally efficient mathematical morphology operators on hypergraphs. To this aim we consider lattice structures on hypergraphs on which we build morphological operators. We develop a pair of dual adjunctions between the vertex set and the hyperedge set of a hypergraph , by defining a vertex-hyperedge correspondence. This allows us to recover the classical notion of a dilation/erosion of a subset of vertices and to extend it to subhypergraphs of . This paper also studies the concept of morphological adjunction on hypergraphs for which both the input and the output are hypergraphs