4 resultados para In Situ
em Cochin University of Science
Resumo:
Precipitated silica is the most promising alternative for carbon black in tyre tread compounds due to its improved performance in terms of rolling resistance and wet grip.But its poor processability is a serious limitation to its commercial application.This thesis suggests a novel route for the incorporation of silica in rubbers,i.e.,precipitation of silica in rubber latex followed by coagulation of the latex to get rubber-silica maseterbatch.Composites with in situ precipitated silica showed improved processability and mechanical properties,when compared to conventional silica composites.
Resumo:
For establishing nitrification in prawn (non-penaeid, salinity 10–15 ppt) and shrimp (penaeid, salinity 30–35 ppt) larval production systems, a stringed bed suspended bioreactor (SBSBR) was designed, fabricated, and validated. It was fabricated with 5 mm polystyrene and low density polyethylene beads as the substrata for ammonia and nitrite oxidizing bacterial consortia, respectively, with an overall surface area of 684 cm2. The reactors were activated in a prototype activator and were transported in polythene bags to the site of testing. Performance of the reactors activated with the nitrifying bacterial consortia AMONPCU-1 (ammonia oxidizers for non-penaeid culture) and NIONPCU-1 (nitrite oxidizers for non-penaeid culture) was evaluated in a Macrobrachium rosenbergii larval rearing system and those activated with AMOPCU-1 (ammonia oxidizers for penaeid culture) and NIOPCU-1 (nitrite oxidizers for penaeid culture) in a Penaeus monodon seed production system. Rapid setting up of nitrification could be observed in both the static systems which resulted in a higher relative per cent survival of larvae
Resumo:
Raman spectra of the KTP single crystal are recorded in electric fields (dc and ac) applied along the polar axis c. Spectra with the laser beam focused near the cathode end, anode end and the centre of the crystal are recorded. The cathode end of the crystal develops a spot ‘grey track’ where the laser beam is focused after a lapse of 5 h from the application of a dc electric field of 38 V/cm. The spectra recorded at the cathode end after the application of field show variations in intensity of bands. A new band appears at 177 cm21. Changes in band intensities are explained on the basis of changes in polarizability of the crystal due to the movement of K1 ions along the polar axis. K1 ions accumulate at the cathode end, where the ‘Grey track’ formation occurs. The intensity enhancement observed for almost all bands in the ac field is attributed to the improvement of crystalline quality.