4 resultados para Implicit functions and mappings
em Cochin University of Science
Resumo:
Dental caries persists to be the most predominant oral disease in spite of remarkable progress made during the past half- century to reduce its prevalence. Early diagnosis of carious lesions is an important factor in the prevention and management of dental caries. Conventional procedures for caries detection involve visual-tactile and radiographic examination, which is considered as “gold standard”. These techniques are subjective and are unable to detect the lesions until they are well advanced and involve about one-third of the thickness of enamel. Therefore, all these factors necessitate the need for the development of new techniques for early diagnosis of carious lesions. Researchers have been trying to develop various instruments based on optical spectroscopic techniques for detection of dental caries during the last two decades. These optical spectroscopic techniques facilitate noninvasive and real-time tissue characterization with reduced radiation exposure to patient, thereby improving the management of dental caries. Nonetheless, a costeffective optical system with adequate sensitivity and specificity for clinical use is still not realized and development of such a system is a challenging task.Two key techniques based on the optical properties of dental hard tissues are discussed in this current thesis, namely laser-induced fluorescence (LIF) and diffuse reflectance (DR) spectroscopy for detection of tooth caries and demineralization. The work described in this thesis is mainly of applied nature, focusing on the analysis of data from in vitro tooth samples and extending these results to diagnose dental caries in a clinical environment. The work mainly aims to improve and contribute to the contemporary research on fluorescence and diffuse reflectance for discriminating different stages of carious lesions. Towards this, a portable and compact laser-induced fluorescence and reflectance spectroscopic system (LIFRS) was developed for point monitoring of fluorescence and diffuse reflectance spectra from tooth samples. The LIFRS system uses either a 337 nm nitrogen laser or a 404 nm diode laser for the excitation of tooth autofluorescence and a white light source (tungsten halogen lamp) for measuring diffuse reflectance.Extensive in vitro studies were carried out on extracted tooth samples to test the applicability of LIFRS system for detecting dental caries, before being tested in a clinical environment. Both LIF and DR studies were performed for diagnosis of dental caries, but special emphasis was given for early detection and also to discriminate between different stages of carious lesions. Further the potential of LIFRS system in detecting demineralization and remineralization were also assessed.In the clinical trial on 105 patients, fluorescence reference standard (FRS) criteria was developed based on LIF spectral ratios (F500/F635 and F500/F680) to discriminate different stages of caries and for early detection of dental caries. The FRS ratio scatter plots developed showed better sensitivity and specificity as compared to clinical and radiographic examination, and the results were validated with the blindtests. Moreover, the LIF spectra were analyzed by curve-fitting using Gaussian spectral functions and the derived curve-fitted parameters such as peak position, Gaussian curve area, amplitude and width were found to be useful for distinguishing different stages of caries. In DR studies, a novel method was established based on DR ratios (R500/R700, R600/R700 and R650/R700) to detect dental caries with improved accuracy. Further the diagnostic accuracy of LIFRS system was evaluated in terms of sensitivity, specificity and area under the ROC curve. On the basis of these results, the LIFRS system was found useful as a valuable adjunct to the clinicians for detecting carious lesions.
Resumo:
Internet today has become a vital part of day to day life, owing to the revolutionary changes it has brought about in various fields. Dependence on the Internet as an information highway and knowledge bank is exponentially increasing so that a going back is beyond imagination. Transfer of critical information is also being carried out through the Internet. This widespread use of the Internet coupled with the tremendous growth in e-commerce and m-commerce has created a vital need for infonnation security.Internet has also become an active field of crackers and intruders. The whole development in this area can become null and void if fool-proof security of the data is not ensured without a chance of being adulterated. It is, hence a challenge before the professional community to develop systems to ensure security of the data sent through the Internet.Stream ciphers, hash functions and message authentication codes play vital roles in providing security services like confidentiality, integrity and authentication of the data sent through the Internet. There are several ·such popular and dependable techniques, which have been in use widely, for quite a long time. This long term exposure makes them vulnerable to successful or near successful attempts for attacks. Hence it is the need of the hour to develop new algorithms with better security.Hence studies were conducted on various types of algorithms being used in this area. Focus was given to identify the properties imparting security at this stage. By making use of a perception derived from these studies, new algorithms were designed. Performances of these algorithms were then studied followed by necessary modifications to yield an improved system consisting of a new stream cipher algorithm MAJE4, a new hash code JERIM- 320 and a new message authentication code MACJER-320. Detailed analysis and comparison with the existing popular schemes were also carried out to establish the security levels.The Secure Socket Layer (SSL) I Transport Layer Security (TLS) protocol is one of the most widely used security protocols in Internet. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL I TLS. But recent attacks on RC4 and HMAC have raised questions about the reliability of these algorithms. Hence MAJE4 and MACJER-320 have been proposed as substitutes for them. Detailed studies on the performance of these new algorithms were carried out; it has been observed that they are dependable alternatives.
Resumo:
This paper describes JERIM-320, a new 320-bit hash function used for ensuring message integrity and details a comparison with popular hash functions of similar design. JERIM-320 and FORK -256 operate on four parallel lines of message processing while RIPEMD-320 operates on two parallel lines. Popular hash functions like MD5 and SHA-1 use serial successive iteration for designing compression functions and hence are less secure. The parallel branches help JERIM-320 to achieve higher level of security using multiple iterations and processing on the message blocks. The focus of this work is to prove the ability of JERIM 320 in ensuring the integrity of messages to a higher degree to suit the fast growing internet applications
Resumo:
The median (antimedian) set of a profile π = (u1, . . . , uk) of vertices of a graphG is the set of vertices x that minimize (maximize) the remoteness i d(x,ui ). Two algorithms for median graphs G of complexity O(nidim(G)) are designed, where n is the order and idim(G) the isometric dimension of G. The first algorithm computes median sets of profiles and will be in practice often faster than the other algorithm which in addition computes antimedian sets and remoteness functions and works in all partial cubes