5 resultados para Imaging contrast
em Cochin University of Science
Resumo:
Significant results of our experimental investigations on the dependence of pH on real time transmission characteristics on recording media fabricated by doping PVC with complexed methylene blue are presented. The optimum pH value for faster bleaching was found to be 4×5. In typical applications, the illumination from one side, normal to the surface of this material, initiates a chemical sequence that records the incident light pattern in the polymer. Thus direct imaging can be successfully done on this sample. The recorded letters were very legible with good contrast and no scattering centres. Diffraction efficiency measurements were also carried out on this material.
Resumo:
Significant results of our experimental investigations on the dependence of pH on real time transmission characteristics on recording media fabricated by doping PVC with complexed methylene blue are presented. The optimum pH value for faster bleaching was found to be 4×5. In typical applications, the illumination from one side, normal to the surface of this material, initiates a chemical sequence that records the incident light pattern in the polymer. Thus direct imaging can be successfully done on this sample. The recorded letters were very legible with good contrast and no scattering centres. Diffraction efficiency measurements were also carried out on this material.
Resumo:
Significant results of our experimental investigations on the dependence of pH on real time transmission characteristics on recording media fabricated by doping PVC with complexed methylene blue are presented. The optimum pH value for faster bleaching was found to be 4 . 5. In typical applications, the illumination from one side, normal to the surface of this material, initiates a chemical sequence that records the incident light pattern in the polymer. Thus direct imaging can be successfully done on this sample. The recorded letters were very legible with good contrast and no scattering centres. Diffraction efficiency measurements were also carried out on this material.
Resumo:
Despite its recognized value in detecting and characterizing breast disease, X-ray mammography has important limitations that motivate the quest for alternatives to augment the diagnostic tools that are currently available to the radiologist. The rationale for pursuing electromagnetic methods are based on the significant dielectric contrast between normal and cancerous breast tissues, when exposed to microwaves. The present study analyzes two-dimensional microwave tomographic imaging on normal and malignant breast tissue samples extracted by mastectomy, to assess the suitability of the technique for early detection ofbreast cancer. The tissue samples are immersed in matching coupling medium and are illuminated by 3 GHz signal. 2-D tomographic images ofthe breast tissue samples are reconstructed from the collected scattered data using distorted Born iterative method. Variations of dielectric permittivity in breast samples are distinguishable from the obtained permittivity profiles, which is a clear indication of the presence of malignancy. Hence microwave tomographic imaging is proposed as an alternate imaging modality for early detection ofbreast cancer.
Resumo:
Multimodal imaging agents that combine magnetic and fluorescent imaging capabilities are desirable for the high spatial and temporal resolution. In the present work, we report the synthesis of multifunctional fluorescent ferrofluids using iron oxide as the magnetic core and rhodamine B as fluorochrome shell. The core–shell structure was designed in such a way that fluorescence quenching due to the inner magnetic core was minimized by an intermediate layer of silica. The intermediate passive layer of silica was realized by a novel method which involves the esterification reaction between the epoxy group of prehydrolysed 3-Glyidoxypropyltrimethoxysilane and the surfactant over iron oxide. The as-synthesized ferrofluids have a high saturation magnetization in the range of 62–65 emu/g and were found to emit light of wavelength 640 nm ( excitation = 446 nm). Time resolved life time decay analysis showed a bi-exponential decay pattern with an increase in the decay life time in the presence of intermediate silica layer. Cytotoxicity studies confirmed the cell viability of these materials. The in vitro MRI imaging illustrated a high contrast when these multimodal nano probes were employed and the R2 relaxivity of these ∗Author to whom correspondence should be addressed. Email: smissmis@gmail.com sample was found to be 334 mM−1s−1 which reveals its high potential as a T2 contrast enhancing agent