34 resultados para Image texture
em Cochin University of Science
Resumo:
Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.
Resumo:
Grey Level Co-occurrence Matrices (GLCM) are one of the earliest techniques used for image texture analysis. In this paper we defined a new feature called trace extracted from the GLCM and its implications in texture analysis are discussed in the context of Content Based Image Retrieval (CBIR). The theoretical extension of GLCM to n-dimensional gray scale images are also discussed. The results indicate that trace features outperform Haralick features when applied to CBIR.
Resumo:
This paper proposes a content based image retrieval (CBIR) system using the local colour and texture features of selected image sub-blocks and global colour and shape features of the image. The image sub-blocks are roughly identified by segmenting the image into partitions of different configuration, finding the edge density in each partition using edge thresholding, morphological dilation and finding the corner density in each partition. The colour and texture features of the identified regions are computed from the histograms of the quantized HSV colour space and Gray Level Co- occurrence Matrix (GLCM) respectively. A combined colour and texture feature vector is computed for each region. The shape features are computed from the Edge Histogram Descriptor (EHD). Euclidean distance measure is used for computing the distance between the features of the query and target image. Experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods
Resumo:
This paper proposes a region based image retrieval system using the local colour and texture features of image sub regions. The regions of interest (ROI) are roughly identified by segmenting the image into fixed partitions, finding the edge map and applying morphological dilation. The colour and texture features of the ROIs are computed from the histograms of the quantized HSV colour space and Gray Level co- occurrence matrix (GLCM) respectively. Each ROI of the query image is compared with same number of ROIs of the target image that are arranged in the descending order of white pixel density in the regions, using Euclidean distance measure for similarity computation. Preliminary experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods.
Resumo:
This paper proposes a content based image retrieval (CBIR) system using the local colour and texture features of selected image sub-blocks and global colour and shape features of the image. The image sub-blocks are roughly identified by segmenting the image into partitions of different configuration, finding the edge density in each partition using edge thresholding, morphological dilation. The colour and texture features of the identified regions are computed from the histograms of the quantized HSV colour space and Gray Level Co- occurrence Matrix (GLCM) respectively. A combined colour and texture feature vector is computed for each region. The shape features are computed from the Edge Histogram Descriptor (EHD). A modified Integrated Region Matching (IRM) algorithm is used for finding the minimum distance between the sub-blocks of the query and target image. Experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods
Resumo:
Magnetic Resonance Imaging play a vital role in the decision-diagnosis process of brain MR images. For an accurate diagnosis of brain related problems, the experts mostly compares both T1 and T2 weighted images as the information presented in these two images are complementary. In this paper, rotational and translational invariant form of Local binary Pattern (LBP) with additional gray scale information is used to retrieve similar slices of T1 weighted images from T2 weighted images or vice versa. The incorporation of additional gray scale information on LBP can extract more local texture information. The accuracy of retrieval can be improved by extracting moment features of LBP and reweighting the features based on users’ feedback. Here retrieval is done in a single subject scenario where similar images of a particular subject at a particular level are retrieved, and multiple subjects scenario where relevant images at a particular level across the subjects are retrieved
Resumo:
Low grade and High grade Gliomas are tumors that originate in the glial cells. The main challenge in brain tumor diagnosis is whether a tumor is benign or malignant, primary or metastatic and low or high grade. Based on the patient's MRI, a radiologist could not differentiate whether it is a low grade Glioma or a high grade Glioma. Because both of these are almost visually similar, autopsy confirms the diagnosis of low grade with high-grade and infiltrative features. In this paper, textural description of Grade I and grade III Glioma are extracted using First order statistics and Gray Level Co-occurance Matrix Method (GLCM). Textural features are extracted from 16X16 sub image of the segmented Region of Interest(ROI) .In the proposed method, first order statistical features such as contrast, Intensity , Entropy, Kurtosis and spectral energy and GLCM features extracted were showed promising results. The ranges of these first order statistics and GLCM based features extracted are highly discriminant between grade I and Grade III. In this study which gives statistical textural information of grade I and grade III Glioma which is very useful for further classification and analysis and thus assisting Radiologist in greater extent.
Resumo:
The present study addresses to understand the sedimentological properties of the coasts of kodungallur and chellanam, central Kerala to bring out the relationship between the textural, mineralogical and geochemical characters with that of the respective environment. The grain size study of the beach ridge sediments from different pits has been investigated at close intervals, which enables to understand the grain size variations with depth. The sediment samples from various pits of the beach ridges indicate that the sediments range primarily from medium to very fine sand, well to moderately sorted, fine to coarse skewed and leptokurtic to platykurtic. The study area is considered as a prograding coast. Variations in grain size down the pit give three phases of beach building activities i.e.; a coarsening upward sequence in the bottom layers, a fining upward in the middle and coarsening upward in the top. Beach ridges are formed by swash built sediments with cross bedding and setting lag type sediments with seaward dipping/horizontal units. Geochemical signatures in the study area have been brought out through the analysis of major and trace elements. Iron is significantly enriched and its control over many trace elements is evident. Copper, chromium, cobalt, lithium, lead and zinc show decreasing trend with depth, while sodium, potassium,strontium,nickel and organic carbon increases. The association of many trace elements with organic carbon has also been established. Dissolution of trace elements in anoxic environment, at depth and reprecipitation in the oxic layers, at near or subsurface, are the major mechanism that brought out the variation of certain environmentally sensitive elements
Resumo:
International School of Photonics, Cochin University of Science and Technology
Resumo:
The continental shelf of southwest coast of India (Kerala) is broader and . flatter compared to that of the east coast. The unique characteristic feature of the study area (innershelf between Narakkal and Purakkad) is the intermittent appearance of 'mud banks' at certain locations during southwest monsoon. The strong seasonality manifests significant changes in the wind, waves, currents, rainfall, drainage etc., along this area. Peculiar geomorphological variation with high, mid and lowlands in the narrow strip of the hinterland, the geological formations mainly consisting of rocks of metamorphic origin and the humid tropical weathering conditions play significant role in regulating the shelf sedimentation. A complementary pattern of distri bution is observed for clay that shows an abundance in the nearshore. Silt, to a major extent, depicts semblance with clay distribution . Summation of the total asymmetry of grain size distribution are inferred from the variation of skewness and kurtosis.Factor I implies a low energy regime where the transportation and deposition phases are controlled mostly by pelagic suspension process as the factor loadings are dominant on finer phi sizes. The second Factor is inferred to be the result of a high energy regime which gives higher loadings on coarser size fractions. The third Factor which might be a transition phase (medium energy regime) representing the resultant flux of coastal circulation of the re-suspension/deposition and an onshoreoffshore advection by reworking and co-deposition of relict and modern sediments. The spatial variations of the energy regime based on the three end-member factor model exhibits high energy zone in the seaward portion transcending to a low energy one towards the coast.From the combined analysis of granulometry and SEM studies, it is concluded that the sandy patches beyond 20 m depth are of relict nature. They are the resultant responses of beach activity during the lower stand of sea level in the Holocene. Re-crystallisation features on the quartz grains indicate that they were exposed to subaerial weathering process subsequent to thei r deposition
Resumo:
Objectives of the present study are to find out the proximate composition of 20 commercially important tropical fish species on the west coast of India. To determine the collagen content in these commercially important fish species and fractionation of collagen into acid soluble collagen (ASC) and hot water soluble (insoluble) collagen (ISC). To classify fishes according to its collagen content and To study the different storage characteristics in the mince based product—surimi, from different species of fishes. The researcher tries to find out a suitable collagen source to incorporate in surimi. and studies the different storage qualities in the mince based product, surimi at different levels of collagen in different species of fishes. The optimum collagen level to get desirable texture and storage quality for mince based product. The researcher aims to develop some products from surimi with desirable level of collagen. And compare the products prepared from surimi of lesser collagen content fish containing desirable level of collagen with surimi prepared with high collagen content fish without collagen. This study gains in importance as there is littleinformation on the collagen content of different species of fishes in India. So far no attempt was made to classify fishes according to its collagen content.
Resumo:
This thesis is an outcome of the investigations carried out on the development of an Artificial Neural Network (ANN) model to implement 2-D DFT at high speed. A new definition of 2-D DFT relation is presented. This new definition enables DFT computation organized in stages involving only real addition except at the final stage of computation. The number of stages is always fixed at 4. Two different strategies are proposed. 1) A visual representation of 2-D DFT coefficients. 2) A neural network approach. The visual representation scheme can be used to compute, analyze and manipulate 2D signals such as images in the frequency domain in terms of symbols derived from 2x2 DFT. This, in turn, can be represented in terms of real data. This approach can help analyze signals in the frequency domain even without computing the DFT coefficients. A hierarchical neural network model is developed to implement 2-D DFT. Presently, this model is capable of implementing 2-D DFT for a particular order N such that ((N))4 = 2. The model can be developed into one that can implement the 2-D DFT for any order N upto a set maximum limited by the hardware constraints. The reported method shows a potential in implementing the 2-D DF T in hardware as a VLSI / ASIC
Resumo:
The work is intended to study the following important aspects of document image processing and develop new methods. (1) Segmentation ofdocument images using adaptive interval valued neuro-fuzzy method. (2) Improving the segmentation procedure using Simulated Annealing technique. (3) Development of optimized compression algorithms using Genetic Algorithm and parallel Genetic Algorithm (4) Feature extraction of document images (5) Development of IV fuzzy rules. This work also helps for feature extraction and foreground and background identification. The proposed work incorporates Evolutionary and hybrid methods for segmentation and compression of document images. A study of different neural networks used in image processing, the study of developments in the area of fuzzy logic etc is carried out in this work