3 resultados para Illinois Early Learning Council

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning Disability (LD) is a general term that describes specific kinds of learning problems. It is a neurological condition that affects a child's brain and impairs his ability to carry out one or many specific tasks. The learning disabled children are neither slow nor mentally retarded. This disorder can make it problematic for a child to learn as quickly or in the same way as some child who isn't affected by a learning disability. An affected child can have normal or above average intelligence. They may have difficulty paying attention, with reading or letter recognition, or with mathematics. It does not mean that children who have learning disabilities are less intelligent. In fact, many children who have learning disabilities are more intelligent than an average child. Learning disabilities vary from child to child. One child with LD may not have the same kind of learning problems as another child with LD. There is no cure for learning disabilities and they are life-long. However, children with LD can be high achievers and can be taught ways to get around the learning disability. In this research work, data mining using machine learning techniques are used to analyze the symptoms of LD, establish interrelationships between them and evaluate the relative importance of these symptoms. To increase the diagnostic accuracy of learning disability prediction, a knowledge based tool based on statistical machine learning or data mining techniques, with high accuracy,according to the knowledge obtained from the clinical information, is proposed. The basic idea of the developed knowledge based tool is to increase the accuracy of the learning disability assessment and reduce the time used for the same. Different statistical machine learning techniques in data mining are used in the study. Identifying the important parameters of LD prediction using the data mining techniques, identifying the hidden relationship between the symptoms of LD and estimating the relative significance of each symptoms of LD are also the parts of the objectives of this research work. The developed tool has many advantages compared to the traditional methods of using check lists in determination of learning disabilities. For improving the performance of various classifiers, we developed some preprocessing methods for the LD prediction system. A new system based on fuzzy and rough set models are also developed for LD prediction. Here also the importance of pre-processing is studied. A Graphical User Interface (GUI) is designed for developing an integrated knowledge based tool for prediction of LD as well as its degree. The designed tool stores the details of the children in the student database and retrieves their LD report as and when required. The present study undoubtedly proves the effectiveness of the tool developed based on various machine learning techniques. It also identifies the important parameters of LD and accurately predicts the learning disability in school age children. This thesis makes several major contributions in technical, general and social areas. The results are found very beneficial to the parents, teachers and the institutions. They are able to diagnose the child’s problem at an early stage and can go for the proper treatments/counseling at the correct time so as to avoid the academic and social losses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning disability (LD) is a neurological condition that affects a child’s brain and impairs his ability to carry out one or many specific tasks. LD affects about 10% of children enrolled in schools. There is no cure for learning disabilities and they are lifelong. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. Just as there are many different types of LDs, there are a variety of tests that may be done to pinpoint the problem The information gained from an evaluation is crucial for finding out how the parents and the school authorities can provide the best possible learning environment for child. This paper proposes a new approach in artificial neural network (ANN) for identifying LD in children at early stages so as to solve the problems faced by them and to get the benefits to the students, their parents and school authorities. In this study, we propose a closest fit algorithm data preprocessing with ANN classification to handle missing attribute values. This algorithm imputes the missing values in the preprocessing stage. Ignoring of missing attribute values is a common trend in all classifying algorithms. But, in this paper, we use an algorithm in a systematic approach for classification, which gives a satisfactory result in the prediction of LD. It acts as a tool for predicting the LD accurately, and good information of the child is made available to the concerned

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Housing is one of the primary human needs. It is second only to the need for food and clothing. From a macro perspective, housing is an industry that can prove itself to be a growth engine for a nation, particularly a developing nation like India. Housing has been one of the top priorities for the various governments in India since the seventies. The need for housing has been increasing at a phenomenal pace in India and so also the need for housing finance. Since the growth in supply of housing could not keep pace with the growth in its demand, housing shortage has been on the rise over the years. Housing finance industry which was relatively dormant till the early nineties underwent sweeping changes ever since the initiation of financial sector deregulation measures. Financial deregulation measures brought about several changes in this industry, the first and foremost being the fast growth rate in the industry coupled with cutthroat competition among the industry players. This trend has been quite prominent since the entry of commercial banks into this arena. Accordingly, there has been a surge in the growth of retail (personal) loans segment, particularly in respect of housing loans. This is evident from the fact that housing loans disbursed by banks as a percentage of their total loans has increased from just 2.79% as of end-March 1997 to as high as 12.52% as of end-March 2007. Thus, there has been an unprecedented growth rate in the disbursement of housing loans by banks, and as of 31 March 2007 the outstanding balance of housing loans by all banks in India stands at Rs.230689 Crore, as against just Rs.7946 Crore as of 31 March 1997, the growth rate being 35.82 %CAGR (for the eleven years’ period, FY 1997-‘2007). However, in spite of the impressive growth in housing finance over the years, there are growing apprehensions regarding its inclusiveness, i.e. accessibility to the common man, the underprivileged sections of the society to housing finance etc. Of late, it is widely recognized that formal housing finance system, particularly the commercial banks (CBs) – most dominant among the players – is fast becoming exclusive in operations, with nearly 90% of the total housing credit going to the rich and upper middle income group, primarily the salaried class. The case of housing finance companies (HFCs) is quite similar in this regard. The poor and other marginalized sections are often deprived of adequate credit facilities for housing purpose. Studies have revealed that urban housing poverty is much more acute than the rural probably because of the very fast process of urbanization coupled with constant rural to urban migration