4 resultados para IUE OBSERVATIONS
em Cochin University of Science
Resumo:
Somatic embryos were induced from scutellar callus of immature zygotic embryos of T aestivum cv. Chinese Spring. Observations on precociously germinating somatic embryos revealed that: (i) In the initial stages the coleoptile is split, exposes the shoot apex and forms a green trichomatous leafy structure. In the germinating zygotic embryo, the coleoptile is tubular, (ii) Unlike what has been inferred earlier the leafy structure is the coleoptile and not the scutellum, (iii) Bipolarity of the embryoid is established later when root develops at the basal end.
Resumo:
This thesis embodies findings on a taxonomical investigation of a group of lower marine invertebrates belonging to the category coelomata. Bryozoans are well known both in fossil and recent taxonomical history. They comprise of about 5,000 living and 16000 fossil species. Bryozoans are well known for their taxonomic abundance and structural diversity,representing the various ecological niches ranging from the intertidal to the abyssal benthic. At a time when global marine biological diversity has become a concern of not only to the scientists but also to the policy makers,an understanding of species diversity and abundance are cardinal aspects of biological studies. Geological time scales which is known that by Pre-Cambrian, marine invertebrate diversity reach the maximum and this diversity has become more comprehensive as time advanced. Taxonomists a vanishing species of scientists have become more concerned in discerning patterns of species diversity. The basic tool for this is identification fo animals. with this idea in mind a detailed study of taxonomy of bryozoan was undertaken . The major part of this thesis is devoted to describe various species of bryozoans with detailed description and ecotypical variations.The pattern of distribution and abundance which are important aspects of animal groups have also been documented. Possible effects of heavy metal contamination on the tolerance and growth of bryozoans, a few species of which have been eliminated from the chronically polluted areas of Cochin backwaters have also been documented.
Resumo:
In the present thesis , observations on the ecology of seaweed flora of Kerala, their distribution and zonation pattern, monthly/seasonal density of seaweeds at each station, frequency of occurrence, standing crop, monthly/seasonal/place-wise data on physico—chemical characters of ambient waters at the stations and their influence on seaweed density have been made. This data will help us in the farming of economically important seaweeds, by providing information on the ideal conditions of seaweed biomass production. Biochemical observations on protein, carbohydrate and lipid contents of different species of nutritive value. Seaweeds with high content of proteins, carbohydrates and lipids can be recommended for food and feed formulations after subjecting them to toxicological studies. The study on monthly/seasonal/placewise variation in biochemical composition of seaweeds will provide necessary information on the appropriate time and place of harvesting the algal species for exploiting its constituents .
Resumo:
Comets are the spectacular objects in the night sky since the dawn of mankind. Due to their giant apparitions and enigmatic behavior, followed by coincidental calamities, they were termed as notorious and called as `bad omens'. With a systematic study of these objects modern scienti c community understood that these objects are part of our solar system. Comets are believed to be remnant bodies of at the end of evolution of solar system and possess the material of solar nebula. Hence, these are considered as most pristine objects which can provide the information about the conditions of solar nebula. These are small bodies of our solar system, with a typical size of about a kilometer to a few tens of kilometers orbiting the Sun in highly elliptical orbits. The solid body of a comet is nucleus which is a conglomerated mixture of water ice, dust and some other gases. When the cometary nucleus advances towards the Sun in its orbit the ices sublimates and produces the gaseous envelope around the nucleus which is called coma. The gravity of cometary nucleus is very small and hence can not in uence the motion of gases in the cometary coma. Though the cometary nucleus is a few kilometers in size they can produce a transient, extensive, and expanding atmosphere with size several orders of magnitude larger in space. By ejecting gas and dust into space comets became the most active members of the solar system. The solar radiation and the solar wind in uences the motion of dust and ions and produces dust and ion tails, respectively. Comets have been observed in di erent spectral regions from rocket, ground and space borne optical instruments. The observed emission intensities are used to quantify the chemical abundances of di erent species in the comets. The study of various physical and chemical processes that govern these emissions is essential before estimating chemical abundances in the coma. Cameron band emission of CO molecule has been used to derive CO2 abundance in the comets based on the assumption that photodissociation of CO2 mainly produces these emissions. Similarly, the atomic oxygen visible emissions have been used to probe H2O in the cometary coma. The observed green ([OI] 5577 A) to red-doublet emission ([OI] 6300 and 6364 A) ratio has been used to con rm H2O as the parent species of these emissions. In this thesis a model is developed to understand the photochemistry of these emissions and applied to several comets. The model calculated emission intensities are compared with the observations done by space borne instruments like International Ultraviolet Explorer (IUE) and Hubble Space Telescope (HST) and also by various ground based telescopes.