2 resultados para INTRACELLULAR HYPERTHERMIA

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation is dedicated to understanding various mechanisms of salinity tolerance in the estuarine clam V. cyprinoides var. cochinensis. Even though V. cyprinoids var. cochinensis and V. cyprinoides are found to coexist in the same area, V. cyprinoids is reported to tolerate higher salinities than variety cochinenesis. Variations in the salinity of sea water may affect the aquatic organisms through specific gravity control and variations in osmotic pressure. The specific gravity of most soft tissues is close to that of normal seawater. Many bottom living forms, both attached and motile, have very high specific gravities eg.villorita cyprinoids. Villorita spp. Occurs abundantly in the reaches of the estuary and backwaters of Kerala. In both marine and estuarine forms, it is observed that mantle employs a lesser quantity of amino acids compared to adductor and foot. The regulation of cell volume is not carried out equally in all types of tissues. The capability of salinity tolerance is an aggregate of both the capabilities of extra cellular anisosmotic and intracellular isosmotic regulations in osmoconforming animals. The ultimate aim of water regulation is to regulate the cell volume.T here are slight changes occur in cell volume even in osmoregulators. These studies can also help in revealing the changes brought about in the cellular organelles like lysosomes, which were found to have a role in the osmoregulatory process. The osmoregulatory machinery of estuarine animals is more streamlined for a successful life in the estuarine regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bio-compatible magnetic fluids having high saturation magnetization find immense applications in various biomedical fields. Aqueous ferrofluids of superparamagnetic iron oxide nanoparticles with narrow size distribution, high shelf life and good stability is realized by controlled chemical co-precipitation process. The crystal structure is verified by X-ray diffraction technique. Particle sizes are evaluated by employing Transmission electron microscopy. Room temperature and low-temperature magnetic measurements were carried out with Superconducting Quantum Interference Device. The fluid exhibits good magnetic response even at very high dilution (6.28 mg/cc). This is an advantage for biomedical applications, since only a small amount of iron is to be metabolised by body organs. Magnetic field induced transmission measurements carried out at photon energy of diode laser (670 nm) exhibited excellent linear dichroism. Based on the structural and magnetic measurements, the power loss for the magnetic nanoparticles under study is evaluated over a range of radiofrequencies.