9 resultados para INTERFACIAL PROPERTIES

em Cochin University of Science


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rheological behavior of a short-polyester-fiber-filled polyurethane elastomer composite containing different bonding agents has been studied in the temperature range 120-160°C and in the shear rate range 63-608 s-'. The composite with and without bonding agents showed a pseudoplastic behavior which decreased with the increase of temperature. Composites containing bonding agents based on polypropyleneglycol and 4,4'-diphenylmethanediisocyanate showed the lowest viscosity values at a particular shear rate, whereas composites containing a glycerol- (GL) based bonding agent showed the highest viscosity. The viscosity of the composite decreased sharply after a particular temperature (140°C) and the fall was less drastic in the composite containing a GL-based bonding agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cure characteristics and mechanical properties of short nylon fiber- styrene /whole tyre reclaim (SBR/WTR) composites with and without an interfacial bonding agent based on 4,4 diphenyl methane diisocyanate and polyethylene glycol (MDI/PEG) have been studied. An 80:40 blend of SBR/ WTR reinforced with 20 phr of short nylon fiber has been selected and the MDI/ PEG ratio has been changed from 0.67:1 to 2:1. The minimum and maximum torques increased with isocyanate concentration. The scorch time and cure time showed an initial reduction. The cure rate showed an initial improvement. Tensile strength, tear strength and abrasion resistance increased with MDI/PEG ratio, these values were higher in longitudinal direction. Resilience and compression set increased with isocyanate concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocomposites based on natural rubber and nano-sized nickelwere synthesized by incorporating nickel nanoparticles in a natural rubber matrix for various loadings of the filler. Structural, morphological, magnetic and mechanical properties of the compositeswere evaluated along with a detailed study of dielectric properties. Itwas found that nickel particleswere uniformly distributed in the matrix without agglomeration resulting in a magnetic nanocomposite. The elastic properties showed an improvement with increase in filler content but breaking stress and breaking strain were found to decrease. Dielectric permittivity was found to decrease with increase in frequency, and found to increase with increase in nickel loading. The decrease in permittivity with temperature is attributed to the high volume expansivity of rubber at elevated temperatures. Dielectric loss of blank rubber as well as the composites was found to increase with temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanosized ZnFe2O4 particles containing traces of a-Fe2O3 by intent were produced by low temperature chemical coprecipitation methods. These particles were subjected to high-energy ball milling. These were then characterised using X-ray diffraction, magnetisation and dielectric studies. The effect of milling on zinc ferrite particles have been studied with a view to ascertaining the anomalous behaviour of these materials in the nanoregime. X-ray diffraction and magnetisation studies carried out show that these particles are associated with strains and it is the surface effects that contribute to the magnetisation. Hematite percentage, probably due to decomposition of zinc ferrite, increases with milling. Dielectric behaviour of these particles is due to interfacial polarisation as proposed by Koops. Also the defects caused by the milling produce traps in the surface layer contributes to dielectric permittivity via spin polarised electron tunnelling between grains. The ionic mechanism is enhanced in dielectrics with the rise in temperature which results in the increase of dielectric permittivity with temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this thesis is regarding the development and evaluation of new bonding agents for short polyester fiber - polyurethane elastomer composites. The conventional bonding system based on hexamethylenetetramine, resorcinol and hydrated silica was not effective as a bonding agent for the composite, as the water eliminated during the formation of the RF resin hydrolysed the urethane linkages. Four bonding agents based on MDI/'I‘DI and polypropyleneglycol, propyleneglycol and glycerol were prepared and the composite recipe was optimised with respect to the cure characteristics and mechanical properties. The flow properties, stress relaxation pattern and the thermal degradation characteristics of the composites containing different bonding agents were then studied in detail to evaluate the new bonding systems. The optimum loading of resin was 5 phr and the ratio of the -01 to isocyanate was 1:1. The cure characteristics showed that the optimum combination of cure rate and processability was given by the composite with the resin based on polypropyleneglycol/ glycerol/ 4,4’diphenylmethanediisocynate (PPG/GL/MDI). From the rheological studies of the composites with and without bonding agents it was observed that all the composites showed pseudoplastic nature and the activation energy of flow of the composite was not altered by the presence of bonding agents. Mechanical properties such as tensile strength, modulus, tear resistance and abrasion resistance were improved in the presence of bonding agents and the effect was more pronounced in the case of abrasion resistance. The composites based on MDI/GL showed better initial properties while composites with resins based on MDI/PPG showed better aging resistance. Stress relaxation showed a multistage relaxation behaviour for the composite. Within the-strain levels studied, the initial rate of relaxation was higher and the cross over time was lesser for the composite containing bonding agents. The bonding agent based on MDI/PPG/GL was found to be a better choice for improving stress relaxation characteristics with better interfacial bonding. Thennogravimetirc analysis showed that the presence of fiber and bonding agents improved the thennal stability of the polyurethane elastomer marginally and it was maximum in the case of MDI / GL based bonding agents. The kinetics of degradation was not altered by the presence of bonding agents

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fine particles of lithium ferrite were synthesized by the sol-gel method. By subsequent heat treatment at different temperatures, lithium ferrites of different grain sizes were prepared. A structural characterization of all the samples was conducted by the x-ray diffraction technique. A grain size of around 12 nm was observed for Li0.5Fe2.5O4 obtained through the sol-gel method. Magnetic properties of lithium ferrite nanoparticles with grain size ranging from 12 to 32 nm were studied. Magnetization measurements showed that Li0.5Fe2.5O4 fine particles exhibit a deviation from the predicted magnetic behaviour. The as-prepared sample of lithium ferrite showed a maximum saturation magnetization of 75 emu g−1. Variation of coercivity is attributed to the transition from multi-domain to single domain nature. Dielectric permittivity and ac conductivity of all the samples were evaluated as a function of frequency, temperature and grain size. Variation of permittivity and ac conductivity with frequency reveals that the dispersion is due to the Maxwell–Wagner type interfacial polarization

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fine particles of cobalt ferrite were synthesized by the sol–gel method. Subsequent heat treatment at different temperatures yielded cobalt ferrites having different grain sizes. X-ray diffraction studies were carried out to elucidate the structure of all the samples. Dielectric permittivity and ac conductivity of all the samples were evaluated as a function of frequency, temperature and grain size. The variation of permittivity and ac conductivity with frequency reveals that the dispersion is due to Maxwell–Wagner type interfacial polarization in general, with a noted variation from the expected behaviour for the cold synthesized samples. High permittivity and conductivity for small grains were explained on the basis of the correlated barrier-hopping model

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyaniline is chemically synthesised and doped with camphor sulphonic acid. FTIR studies carried out on these samples indicate that the aromatic rings are retained after polymerisation. The percentage of crystallinity for polyaniline doped with camphor sulphonic acid has been estimated from the X-ray diffraction studies and is around 56% with respect to polyaniline emeraldine base. The change in dielectric permittivity with respect to temperature and frequency is explained on the basis of interfacial polarisation. AC conductivity is evaluated from the observed dielectric permittivity. The values of AC and DC conductivity and activation energy are calculated. The activation energy values suggested that the hopping conduction is the prominent conduction mechanism in this system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc aluminate nanoparticles with average particle size of 40 nm were synthesized using a sol–gel combustion method. X-ray diffractometry result was analysed by Rietveld refinement method to establish the phase purity of the material. Different stages of phase formation of the material during the synthesis were investigated using differential scanning calorimetry and differential thermogravimetric analysis. Particle size was determined with transmission electron microscopy and the optical bandgap of the nanoparticles was determined by absorption spectroscopy in the ultraviolet-visible range. Dielectric permittivity and a.c. conductivity of the material were measured for frequencies from 100 kHz to 8 MHz in the temperature range of 30–120◦C. The presence of Maxwell– Wagner type interfacial polarization was found to exist in the material and hopping of electron by means of quantum mechanical tunneling is attributed as the reason for the observed a.c. conductivity