9 resultados para INCREASES PROLIFERATION

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work is an attempt to understand the role of 5-HT, 5-HT1A and 5-HT2C receptors in the regulation of liver cell proliferation using in vivo and in vitro models. The work also focuses on the brain serotonergic changes associated with hapatocyte proliferation and apoptosis to delineate its regulatory function. The investigation of mechanisms involving different models of hepatocyte proliferation contributes to our knowledge about serotonergic regulation of cell growth, apoptosis and carcinogenesis of liver. The study reveals that the alteration of the 5-HT1A and 5-HT2C receptor function and gene expression in the brain stem, cerebral cortex and hypothalamus play an important role in the sympathetic regulation of cell proliferation, neoplastic transformation and apoptosis. The functional balance between 5-HT1A and 5-HT2C receptor plays an important role in regulating hepatocyte proliferation, neoplastic transformation and hepatic apoptosis. The regulatory role of 5-HT1A and 5-HT2C receptor during neoplastic transformation and apoptosis could lead to possible therapeutic intervention in the treatment of cancers and have immense clinical importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adrenergic stimulation has an inyortant role in the pancreatic It-cell proliferation and insulin secretion. In the present study. we have investigaled how sympathetic system mgulales the panrrealic n I rnerui nr ht an:ilyiing I'pinephi inn 1111 ), Norepinephrinc (NE) and /1-adrenergic receptor changes in the brain as (%eli is in the I swirls. Fill and NII showed a significant decrease in the brain regions, pancreas and plasma :rt 72Ius iller partial prurcrealectonty. We observed an increase in the circulating insulin levels at 72 hrs. Scatchard analysis using I CHI propranolol showed a significant increase in the number of loth the low affinity and high affinity t-adrenergic receplors in cerebral cortex and hypothalamus of partially pancreatectornised rats during peak DNA synthesis. The affinity of the receptors decrea,ed significantly in the low and high affinity receptors of cerebral cortex and the high affinity hypothalamic receptors. In file brain stein, low affinity receptors were increased significantly during regeneration whereas there was no change in the high affinity receptors. The pancreatic ff-adrenergic receptors were also up regulated at 72 firs after partial panerealectony. In vitro studies showed that /i-adrenergic receptors are positive regulators of islet cell proliferation and insulin secretion. Thus our results suggest that the t-adrenergic receptors are functionally enhanced during pancreatic regeneration, which in turn increases pancreatic ft-cell proliferation an(hilisulin secretion in wean hug rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GABAergic alterations in hypothalamus during compensatory hyperplasia after partial hepatectomy (PH), lead nitrate (LN) induced direct hyperplasia and N-nitrosodiethylamine (NDEA) induced neoplasia in liver were investigated. Serum GABA levels were increased in all 3 experimental groups compared with the control. GABA content decreased in hypothalamus of PH and NDEA treated rats, while it increased in LN treated rats. GABAA receptor number and affinity in hypothalamic membrane preparations of rats showed a significant decrease in PH and NDEA treated rats, while in LN treated rats the affinity increased without any change in the receptor number. The GABAB receptor number increased in PH and NDEA treated rats, while it decreased in LN treated rats. The affinity of the receptor also increased in NDEA treated rats. Plasma NE levels showed significant increase in PH and NDEA rats compared with the control while it decreased in LN treated rats. The results of the present study suggests that liver cell proliferation is influencing the hypothalamic GABAergic neurotransmission and these changes regulate the hepatic proliferation through the sympathetic stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma aminohutyric acid (GAB A.) receptor tunctionaI status was artaIV se(l in pa It ial hcpatcctoIn ised.II'II). lead nitrate (LN) induced hyperplastic and N-nifrosodiethylantinc INDEAI treated nctplastic rat Iivers during peak DNA synthesis. The high-affinity I'HJGALA binding significantly decreased in PII and NDEi\ rats and the receptor affinity decreased in NDEA and increased in LN rats compared with control . in NDEA. displacement analysis of I'I IIGABA with muscimol showed loss of low-allinity site and a shill of high-allinity cite towards low-allinity . ' 1 he affinity sites shifted towards high-affinity in LN rats. 'file number of low-allinity 1'I Ilhicuc)lline receptors decreased cignilic:uttly in NDEA and I'll whereas it increased in LN rats. (ir\Bi\t receptor :gunist. unrscinrul. disc dependcnllyinhihilcd epidermal growth factor IEGI--) induced DNA synthesis :uul enhanced the tr:utsfnrnting grmvth )actor (Il I I'(il (tlI mediated DNA synthesis suppression in prim:uy hepalucvte cultures . Our results suggest that GABA,t reccjhtor act as an inhibitory signal fur hepatic cell prolifctatiun.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis is an attempt to understand the role of GABA, GABAA and GABAB receptors in the regulation of liver cell proliferation using in vivo and in vitro models. The work also focuses on the brain GABAergic changes associated with normal and neoplastic cell growth in liver and to delineate its regulatory function. The investigation of mechanisms involving mitogenic models without cell necrosis may contribute our knowledge about both on cell growth, carcinogenesis, liver pathology and treatment. Objectives of the present study are, to induce controlled liver cell proliferation by partial hepatectomy and lead nitrate administration and uncontrolled cell proliferation by N-nitrosodiethylamine treatment in male Wistar rats, the changes in the content of GABA, GABAA,GABAB in various rat brain regions. To study the GABAA and GABAB receptor changes in brain stem, hypothalamus, cerebellum and cerebral cortex during the active cortex during the period of active DNA synthesis in liver of different experimental groups. The changes in GABAA and GABAB receptor function of the brain stem, hypothalamus and cerebellum play an important role sympathetic regulation of cell proliferation and neoplastic growth in liver. The decrease in GABA content in brain stem, hypothalamus and cerebellum during regeneration and neoplasia in liver. The time course of brain GABAergic changes was closely correlated with that of heptic DNA synthesis. The functional significance of these changes was further explored by studying the changes in GABAA and GABAB receptors in brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vibrio are important during hatchery rearing. aquaculture phase and post-harvest quality of shrimps. Vibrio spp are of concern to shrimp farmers and hatchery operators because certain species can cause Vibriosis. Vibrio species are of concern to humans because certain species cause serious diseases.With the progress in aquaculture, intensive systems used for shrimp aquaculture create an artificial environment that increases bacterial growth. To maintain the productivity of such an intensive aquaculture, high inputs of fish protein have to be employed for feeding together with high levels of water exchange and the massive use of antibiotics/ probiotics / chemicals. It seems that the combination of these conditions favours the proliferation of vibrios and enhances their virulence and disease prevalence. The risk of a microbial infection is high, mainly at larval stages. The effect and severity are related to Vibrio species and dose, water, feed, shrimp quality and aquaculture management.Consumption of seafood can occasionally result in food-bome illnesses due to the proliferation of indigenous pathogens like Vibrio.Of the l2 pathogenic Vibrio species, 8 species are known to be directly food associated. Strict quality guidelines have been laid by the importing nations, for the food products that enter their markets. The microbiological quality requirement for export of frozen shrimp products is that V.cholerae, V.parahaemolyticus and V. vulnificus should be absent in 25g of the processed shrimp (Export Inspection Council of India, 1995). The mere presence of these pathogenic Vibrios is sufficient for the rejection of the exported product.The export rejections cause serious economic loss to the shrimp industry and might harm the brand image of the shrimp products from the countiy.There is a need for an independent study on the incidence of different pathogenic vibrios in shrimp aquaculture and investigate their biochemical characteristics to have a better understanding about the growth and survival of these organisms in the shrimp aquaculture niche. PCR based methods (conventional PCR, duplex PCR, multiplex-PCR and Real Time PCR) for the detection of the pathogenic Vibrios is important for rapid post-harvest quality assessment. Studies on the genetic heterogeneity among the specific pathogenic vibrio species isolated from shrimp aquaculture system provide; valuable information on the extent of genetic diversity of the pathogenic vibrios, the shrimp aquaculture system.So the present study was undertaken to study the incidence of pathogenic Vibrio spp. in Penaeus monodon shrimp hatcheries and aquaculture farms, to carry out biochemical investigations of the pathogenic Vibrio spp isolated from P. monodon hatchery and. aquaculture environments, to assess the effect of salt (NaCl) on the growth and enzymatic activities of pathogenic Vibrio spp., to study the effect of preservatives, and chemicals on the growth of pathogenic Vibrio spp. and to employ polymerase chain reaction (PCR) methods for the detection of pathogenic V ibrio spp.Samples of water (n=7) and post-larvae (n=7) were obtained from seven Penaeus monodon hatcheries and samples of water (n=5), sediment (n=5) and shrimp (n=5) were obtained from five P. monodon aquaculture farms located on the East Coast of lndia. The microbiological examination of water, sediment, post-larvae and shrimp samples was carried out employing standard methods and by using standard media.The higher bacterial loads were obtained in pond sediments which can be attributed to the accumulation of organic matter at the pond bottom which stimulated bacterial growth.Shrimp head. (4.78 x 105 +/- 3.0 x 104 cfu/g) had relatively higher bacterial load when compared to shrimp muscle 2.7 x 105 +/- 1.95 x 104 cfu/g). ln shrimp hatchery samples, the post-larvae (2.2 x 106 +/- 1.9 x 106 cfu/g) had higher bacterial load than water (5.6 x 103 +/- 3890 cfu/ml).The mean E.coli counts were higher in aquaculture pond sediment (204+/-13 cfu/g) and pond water (124+/-88 cfu/ml). Relatively lower Escherichia coli counts were obtained from shrimp samples (12+/-11 to 16+/-16.7 cfu/g). The presence of E.coli in aquaculture environment might have been from the source water. E.coli was not detected in hatchery waters and post-larvae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis Entitled Neuronal degeneration in streptozotocin induced diabetic rats: effect of aegle marmelose and pyridoxine in pancreatic B cell proliferation and neuronal survival. Diabetes mellitus, a chronic metabolic disorder results in neurological dysfunctions and structural changes in the CNS. Antioxidant therapy is a challenging but necessary dimension in the management of diabetes and neurodegenerative changes associated with it. Our results showed regional variation and imbalance in the expression pattern of dopaminergic receptor subtypes in diabetes and its role in imbalanced insulin signaling and glucose regulation. Disrupted dopaminergic signaling and increased hyperglycemic stress in diabetes contributed to the neuronal loss. Neuronal loss in diabetic rats mediated through the expression of pattern of GLUT-3, CREB, IGF-1, Akt-1, NF,B, second messengers- cAMP, cGMP, IP3 and activation of apoptotic factors factors- TNF-a,caspase-8. Disrupted dopaminergic receptor expressions and its signaling in pancreas contributed defective insulin secretion in diabetes. Activation of apoptotic factors- TNF- a,caspase-8 and defective functioning of neuronal survival factors, disrupted second messenger signaling modulated neuronal viability in diabetes. Hyperglycemic stress activated the expression of TNF-a,caspase-8, BAX and differential expression of anti oxidant enzymes- SOD and GPx in liver lead to apoptosis. Treatment of diabetic rats with insulin, Aegle marmelose and pyridoxine significantly reversed the altered dopaminergic neurotransmission, GLUT3, GLUT2, IGF-1 and second messenger signaling. Antihyperglycemic and antioxidant activity of Aegle marmelose and pyridoxine enhanced pancreatic B cell proliferation, increased insulin synthesis and secretion in diabetic rats. Thus our results conclude the neuroprotective and regenerating ability of Aegle marmelose and pyridoxine which in turn has a novel therapeutic role in the management of diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticulate drug delivery systems provide wide opportunities for solving problems associated with drug stability or disease states and create great expectations in the area of drug delivery (Bosselmann & Williams, 2012). Nanotechnology, in a simple way, explains the technology that deals with one billionth of a meter scale (Ochekpe, et al., 2009). Fewer side effects, poor bioavailability, absorption at intestine, solubility, specific delivery to site of action with good pharmacological efficiency, slow release, degradation of drug and effective therapeutic outcome, are the major challenges faced by most of the drug delivery systems. To a great extent, biopolymer coated drug delivery systems coupled with nanotechnology alleviate the major drawbacks of the common delivery methods. Chitosan, deacetylated chitin, is a copolymer of β-(1, 4) linked glucosamine (deacetylated unit) and N- acetyl glucosamine (acetylated unit) (Radhakumary et al., 2005). Chitosan is biodegradable, non-toxic and bio compatible. Owing to the removal of acetyl moieties that are present in the amine functional groups of chitin, chitosan is readily soluble in aqueous acidic solution. The solubilisation occurs through the protonation of amino groups on the C-2 position of D-glucosamine residues whereby polysaccharide is converted into polycation in acidic media. Chitosan interacts with many active compounds due to the presence of amine group in it. The presence of this active amine group in chitosan was exploited for the interaction with the active molecules in the present study. Nanoparticles of chitosan coupled drugs are utilized for drug delivery in eye, brain, liver, cancer tissues, treatment of spinal cord injury and infections (Sharma et al., 2007; Li, et a., 2009; Paolicelli et al., 2009; Cho et al., 2010). To deliver drugs directly to the intended site of action and to improve pharmacological efficiency by minimizing undesired side effects elsewhere in the body and decrease the long-term use of many drugs, polymeric drug delivery systems can be used (Thatte et al., 2005).