3 resultados para IGF-IR

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photothermal effect refers to heating of a sample due to the absorption of electromagnetic radiation. Photothermal (PT) heat generation which is an example of energy conversion has in general three kinds of applications. 1. PT material probing 2. PT material processing and 3. PT material destruction. The temperatures involved increases from 1-. 3. Of the above three, PT material probing is the most important in making significant contribution to the field of science and technology. Photothermal material characterization relies on high sensitivity detection techniques to monitor the effects caused by PT material heating of a sample. Photothermal method is a powerful high sensitivity non-contact tool used for non-destructive thermal characterization of materials. The high sensitivity of the photothermal methods has led to its application for analysis of low absorbance samples. Laser calorimetry, photothermal radiometry, pyroelectric technique, photoacoustic technique, photothermal beam deflection technique, etc. come under the broad class ofphotothermal techniques. However the choice of a suitable technique depends upon the nature of the sample, purpose of measurement, nature of light source used, etc. The present investigations are done on polymer thin films employing photothermal beam deflection technique, for the successful determination of their thermal diffusivity. Here the sample is excited by a He-Ne laser (A = 6328...\ ) which acts as the pump beam. Due to the refractive index gradient established in the sample surface and in the adjacent coupling medium, another optical beam called probe beam (diode laser, A= 6500A ) when passed through this region experiences a deflection and is detected using a position sensitive detector and its output is fed to a lock-in amplifier from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the signal is suitably analysed for determining the thermal diffusivity.The production of polymer thin film samples has gained considerable attention for the past few years. Plasma polymerization is an inexpensive tool for fabricating organic thin films. It refers to formation of polymeric materials under the influence of plasma, which is generated by some kind of electric discharge. Here plasma of the monomer vapour is generated by employing radio frequency (MHz) techniques. Plasma polymerization technique results in homogeneous, highly adhesive, thermally stable, pinhole free, dielectric, highly branched and cross-linked polymer films. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer.Near IR overtone investigations on some organic molecules using local mode model are also done. Higher vibrational overtones often provide spectral simplification and greater resolution of peaks corresponding to nonequivalent X-H bonds where X is typically C, N or O. Vibrational overtone spectroscopy of molecules containing X-H oscillators is now a well established tool for molecular investigations. Conformational and steric differences between bonds and structural inequivalence ofCH bonds (methyl, aryl, acetylenic, etc.) are resolvable in the higher overtone spectra. The local mode model in which the X-H oscillators are considered to be loosely coupled anharmonic oscillators has been widely used for the interpretation of overtone spectra. If we are exciting a single local oscillator from the vibrational ground state to the vibrational state v, then the transition energy of the local mode overtone is given by .:lE a......v = A v + B v2 • A plot of .:lE / v versus v will yield A, the local mode frequency as the intercept and B, the local mode diagonal anharmonicity as the slope. Here A - B gives the mechanical frequency XI of the oscillator and B = X2 is the anharmonicity of the bond. The local mode parameters XI and X2 vary for non-equivalent X-H bonds and are sensitive to the inter and intra molecular environment of the X-H oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Open access iiiovemerit and open source software movement plays an important role in creation of knowledge, knowledge management and knowledge dissemination. Scholarly communication and publishing are increasingly taking place in the electronic environment. With a growing proportion of the scholarly record now existing only in digital format, serious issues regarding access and preservation are being raised that are central to future scholarship. Institutional Repositories provide access to past. present and future scholarly literature and research documentation; ensures its preservation; assists users in discovery and use; and offers educational programs to enable users to develop lifelong literacy. This paper explores these aspects on how IR of Cochin University of Science & Technology supports scientific community for knowledge creation. knowledge Management, and knowledge dissemination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FT-Raman and FT-IR spectra of ASnFe(PO4)3 [A=Na2, Ca, Cd] were recorded and analyzed. The bands were assigned in terms of the vibrational group frequencies of SnO6 octahedral and PO4 tetrahedral. The spectral analysis shows that the symmetry of corner shared octahedral (SnO6) and the tetrahedral (PO4) are lowered from their free ion symmetry state. The presence of Fe3+ ions disrupts the S–N–O–S–N chain in the structure. This causes distortion of SnO6 and PO4 in the structure of all the compounds. Also it is seen that there are two distinct PO4 tetrahedra of different P–O bond lengths. One of these tetrahedra is linearly distorted in all the title compounds. The PO4 frequencies and bond lengths are calculated theoretically and are in agreement with the experimental values. The presence of PO4 polyanion in the structure can reduce the redox energy and hence reduce the metal oxygen covalency strength in the structure