11 resultados para Hyperbolic conservation laws

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis contains a study of conservation laws of fluid mechanics. These conservation laws though classical, have been put to extensive studies in t:he past many decades

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis we are studying possible invariants in hydrodynamics and hydromagnetics. The concept of flux preservation and line preservation of vector fields, especially vorticity vector fields, have been studied from the very beginning of the study of fluid mechanics by Helmholtz and others. In ideal magnetohydrodynamic flows the magnetic fields satisfy the same conservation laws as that of vorticity field in ideal hydrodynamic flows. Apart from these there are many other fields also in ideal hydrodynamic and magnetohydrodynamic flows which preserves flux across a surface or whose vector lines are preserved. A general study using this analogy had not been made for a long time. Moreover there are other physical quantities which are also invariant under the flow, such as Ertel invariant. Using the calculus of differential forms Tur and Yanovsky classified the possible invariants in hydrodynamics. This mathematical abstraction of physical quantities to topological objects is needed for an elegant and complete analysis of invariants.Many authors used a four dimensional space-time manifold for analysing fluid flows. We have also used such a space-time manifold in obtaining invariants in the usual three dimensional flows.In chapter one we have discussed the invariants related to vorticity field using vorticity field two form w2 in E4. Corresponding to the invariance of four form w2 ^ w2 we have got the invariance of the quantity E. w. We have shown that in an isentropic flow this quantity is an invariant over an arbitrary volume.In chapter three we have extended this method to any divergence-free frozen-in field. In a four dimensional space-time manifold we have defined a closed differential two form and its potential one from corresponding to such a frozen-in field. Using this potential one form w1 , it is possible to define the forms dw1 , w1 ^ dw1 and dw1 ^ dw1 . Corresponding to the invariance of the four form we have got an additional invariant in the usual hydrodynamic flows, which can not be obtained by considering three dimensional space.In chapter four we have classified the possible integral invariants associated with the physical quantities which can be expressed using one form or two form in a three dimensional flow. After deriving some general results which hold for an arbitrary dimensional manifold we have illustrated them in the context of flows in three dimensional Euclidean space JR3. If the Lie derivative of a differential p-form w is not vanishing,then the surface integral of w over all p-surfaces need not be constant of flow. Even then there exist some special p-surfaces over which the integral is a constant of motion, if the Lie derivative of w satisfies certain conditions. Such surfaces can be utilised for investigating the qualitative properties of a flow in the absence of invariance over all p-surfaces. We have also discussed the conditions for line preservation and surface preservation of vector fields. We see that the surface preservation need not imply the line preservation. We have given some examples which illustrate the above results. The study given in this thesis is a continuation of that started by Vedan et.el. As mentioned earlier, they have used a four dimensional space-time manifold to obtain invariants of flow from variational formulation and application of Noether's theorem. This was from the point of view of hydrodynamic stability studies using Arnold's method. The use of a four dimensional manifold has great significance in the study of knots and links. In the context of hydrodynamics, helicity is a measure of knottedness of vortex lines. We are interested in the use of differential forms in E4 in the study of vortex knots and links. The knowledge of surface invariants given in chapter 4 may also be utilised for the analysis of vortex and magnetic reconnections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study on the sustainability of medicinal plants in Kerala economic considerations in domestication and conservation of forest resources. There is worldwide consensus on the fact that medicinal plants are important not only in the local health support systems but in rural income and foreign exchange earnings. Sustainability of medicinal plants is important for the survival of forest dwellers, the forest ecosystem, conserving a heritage of human knowledge and overall development through linkages. More equitable sharing of the benefits from commercial utilization of the medicinal plants was found essential for the sustainability of the plants. Cultivation is very crucial for the sustainability of the sector. Through a direct tie-up with the industry, the societies can earn more income and repatriate better collection charges to its members. Cultivation should be carried out in wastelands, tiger reserves and in plantation forests. In short, the various players in the in the sector could find solution to their specific problems through co-operation and networking among them. They should rely on self-help rather than urging the government to take care of their needs. As far as the government is concerned, the forest department through checking over- exploitation of wild plants and the Agriculture Dept. through encouraging cultivation could contribute to the sustainable development of the medicinal plant sector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present work deals with the studies on energy requirement and convervation in selected fish harvesting systems.Modem fishing is one of the most energy intensive methods of food production. Fossil fuels used for motorised and mechanised fishing are nonrenewable and limited. Most of the environmental problems that confront mankind today are connected to the use of energy in one way or another. Code of Conduct for Responsible Fisheries (FAO, 1995) highlights the need for efficient use of energy in the fisheries sector. Information on energy requirement in different fish harvesting systems, based on the principles of energy analysis, is entirely lacking in respect of Indian fisheries. Such an analysis will provide an unbiased decision making support for maximising the yield per unit of non-renewable energy use, from different fishery resource systems, by rational deployment of harvesting systems. In the present study, results of investigations conducted during 1997-2000 on energy requirement in selected fish harvesting systems and approaches to energy conservation in fishing, are presented along with a detailed description of the fish harvesting systems and their operation. The content of the thesis is organised into 8 Chapters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The customary laws of Union Territory of Lakshadweep islands are a challenge for judicial institution as well as administrative machinery. With the peculiarities of socio-legal institutions, Lakshadweep system stands apart from the mainstream of legal systems in India. How far do the charismatic modernisation trends flowing into the Lakshadweep society affect the people already protected by the uncodified laws of the past? Many are the issues at this stage. This study analyses them. It examines the growth, evolution and development of the legal system in the islands vis-a-vis the administrative mechanism imposed by the mainland ethos and culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study proposes to verify the hypothesis relating to labour legislation in the industrial sector.Here there are as many as fifty enacments of the central government alone.These legislations indicating the growth of this branch of law over a period of more than half a centuary cover a wide spectrum of interests of workers both individuals and collective in different areas of employment.However this study relates mainly to a)trade unions act,b)industrial employment c)industrial disputes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the diversified use of coir geotextiles, its use as a protective covering to improve crop productivity and to reduce weed problem assumes to be much significant. An experiment has been conducted at Kumbazha, in Pathanamthitta district, Kerala, India to evaluate the different types of coir geotextiles and polythene as soil mulch. The treatments include different mulching materials like natural needled felt, black needled felt, rubberized coir, black polythene and transparent polythene along with a control plot (no mulch). The experiment was laid out in Completely Randomized Design with six replications. The test crops used were bhindi (var. Salkeerthi) and pineapple (var. Mauritius). The study reveals that with bhindi crop growth parameters like plant height, leaf number and lateral spread were increased by mulching with rubberized coir and transparent polythene. These two mulches caused early flowering and increased fruit yield. Coir materials as mulch recorded a yield increase ranging from 67 to 196%. Observations also reveal that weeds were not grown in plots mulched with black polythene, transparent polythene and rubberized coir. Rubberized coir as mulch enhanced the fruit yield in the case of pineapple, which is followed by natural needled felt and transparent polythene. Black polythene resisted weed growth up to 7MAP, whereas rubberized coir and transparent polythene suppressed weeds up to 8MAP. Though the weeds were grown in other treatments the weeds count was significantly lower than that of control plot. Mulching with transparent polythene enhanced the soil temperature whereas rubberized coir lowered soil temperature. More over all mulched treatments had a favourable influence in increasing soil moisture. Observing the biodegradability and eco-friendly nature of coir it could be inferred that rubberized coir can serve as good mulch for bhindi and pineapple with minimum weed problem

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cement industry ranks 2nd in energy consumption among the industries in India. It is one of the major emitter of CO2, due to combustion of fossil fuel and calcination process. As the huge amount of CO2 emissions cause severe environment problems, the efficient and effective utilization of energy is a major concern in Indian cement industry. The main objective of the research work is to assess the energy cosumption and energy conservation of the Indian cement industry and to predict future trends in cement production and reduction of CO2 emissions. In order to achieve this objective, a detailed energy and exergy analysis of a typical cement plant in Kerala was carried out. The data on fuel usage, electricity consumption, amount of clinker and cement production were also collected from a few selected cement industries in India for the period 2001 - 2010 and the CO2 emissions were estimated. A complete decomposition method was used for the analysis of change in CO2 emissions during the period 2001 - 2010 by categorising the cement industries according to the specific thermal energy consumption. A basic forecasting model for the cement production trend was developed by using the system dynamic approach and the model was validated with the data collected from the selected cement industries. The cement production and CO2 emissions from the industries were also predicted with the base year as 2010. The sensitivity analysis of the forecasting model was conducted and found satisfactory. The model was then modified for the total cement production in India to predict the cement production and CO2 emissions for the next 21 years under three different scenarios. The parmeters that influence CO2 emissions like population and GDP growth rate, demand of cement and its production, clinker consumption and energy utilization are incorporated in these scenarios. The existing growth rate of the population and cement production in the year 2010 were used in the baseline scenario. In the scenario-1 (S1) the growth rate of population was assumed to be gradually decreasing and finally reach zero by the year 2030, while in scenario-2 (S2) a faster decline in the growth rate was assumed such that zero growth rate is achieved in the year 2020. The mitigation strategiesfor the reduction of CO2 emissions from the cement production were identified and analyzed in the energy management scenarioThe energy and exergy analysis of the raw mill of the cement plant revealed that the exergy utilization was worse than energy utilization. The energy analysis of the kiln system showed that around 38% of heat energy is wasted through exhaust gases of the preheater and cooler of the kiln sysetm. This could be recovered by the waste heat recovery system. A secondary insulation shell was also recommended for the kiln in the plant in order to prevent heat loss and enhance the efficiency of the plant. The decomposition analysis of the change in CO2 emissions during 2001- 2010 showed that the activity effect was the main factor for CO2 emissions for the cement industries since it is directly dependent on economic growth of the country. The forecasting model showed that 15.22% and 29.44% of CO2 emissions reduction can be achieved by the year 2030 in scenario- (S1) and scenario-2 (S2) respectively. In analysing the energy management scenario, it was assumed that 25% of electrical energy supply to the cement plants is replaced by renewable energy. The analysis revealed that the recovery of waste heat and the use of renewable energy could lead to decline in CO2 emissions 7.1% for baseline scenario, 10.9 % in scenario-1 (S1) and 11.16% in scenario-2 (S2) in 2030. The combined scenario considering population stabilization by the year 2020, 25% of contribution from renewable energy sources of the cement industry and 38% thermal energy from the waste heat streams shows that CO2 emissions from Indian cement industry could be reduced by nearly 37% in the year 2030. This would reduce a substantial level of greenhouse gas load to the environment. The cement industry will remain one of the critical sectors for India to meet its CO2 emissions reduction target. India’s cement production will continue to grow in the near future due to its GDP growth. The control of population, improvement in plant efficiency and use of renewable energy are the important options for the mitigation of CO2 emissions from Indian cement industries