12 resultados para Hydrolysis kinetics
em Cochin University of Science
Resumo:
Highly crystalline, ultra fine TiO (anatase) having high surface area has been prepared by thermal hydrolysis of titanyl sulphate 2 solution and characterized using B.E.T surface area measurements, XRD and chemical analysis. The dependence of surface area on concentration of staffing solution, temperature of hydrolysis, duration of boiling and calcination temperature were also studied. As the boiling temperature, duration of boiling and calcination temperature increased, the surface area of TiO formed decreased significantly. 2 On increasing calcination temperature, the crystallite size of TiO also increased and gradually the phase transformation to rutile took 2 place. The onset and completion temperatures of rutilation were 700 and 10008C, respectively
Resumo:
The metal complex, [Ni(en)2(H2O)2](NO3)2 (en = ethylenediamine), was decomposed in a static furnace at 200 C by autogenous decomposition to obtain phase pure metallic nickel nanocrystallites. The nickel metal thus obtained was studied by XRD, IR spectra, SEM and CHN analysis. The nickel crystallites are in the nanometer range as indicated by XRD studies. The IR spectral studies and CHN analyses show that the surface is covered with a nitrogen containing species. Thermogravimetric mass gain shows that the product purity is high (93%). The formed nickel is stable and resistant to oxidation up to 350 C probably due to the coverage of nitrogen containing species. Activation energy for the oxidation of the prepared nickel nanocrystallites was determined by non-isothermal methods and was found to depend on the conversion ratio. The oxidation kinetics of the nickel crystallites obeyed a Johnson–Mehl–Avrami mechanism probably due to the special morphology and crystallite strain present on the metal.
Resumo:
The growth kinetics of an aerial bacterial colony on solid agar media was studied using laser induced fluorescence technique. Fluorescence quenching of Rhodamin B by the bacterial colony was utilized for the study. The lag phase, log phase, and stationary phase of growth curve of bacterial colony was identified by measuring peak fluorescence intensity of dye doped bacterial colony.
Resumo:
Glucoamylase was immobilized on acid activated montmorillonite clay via two different procedures namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and the activity of immobilized glucoamylase for starch hydrolysis was determined in a batch reactor. XRD shows intercalation of enzyme into the clay matrix during both immobilization procedures. Intercalation occurs via the side chains of the amino acid residues, the entire polypeptide backbone being situated at the periphery of the clay matrix. 27Al NMR studies revealed the different nature of interaction of enzyme with the support for both immobilization techniques. N2 adsorption measurements indicated a sharp drop in surface area and pore volume for the covalently bound glucoamylase that suggested severe pore blockage. Activity studies were performed in a batch reactor. The adsorbed and covalently bound glucoamylase retained 49% and 66% activity of the free enzyme respectively. They showed enhanced pH and thermal stabilities. The immobilized enzymes also followed Michaelis–Menten kinetics. Km was greater than the free enzyme that was attributed to an effect of immobilization. The immobilized preparations demonstrated increased reusability as well as storage stability.
Resumo:
Glucoamylase from Aspergillus Niger was immobilized on montmorillonite clay (K-10) by two procedures, adsorption and covalent binding. The immobilized enzymes were characterized using XRD, surface area measurements and 27Al MAS NMR and the activity of the immobilized enzymes for starch hydrolysis was tested in a fixed bed reactor (FBR). XRD shows that enzyme intercalates into the inter-lamellar space of the clay matrix with a layer expansion up to 2.25 nm. Covalently bound glucoamylase demonstrates a sharp decrease in surface area and pore volume that suggests binding of the enzyme at the pore entrance. NMR studies reveal the involvement of octahedral and tetrahedral Al during immobilization. The performance characteristics in FBR were evaluated. Effectiveness factor (η) for FBR is greater than unity demonstrating that activity of enzyme is more than that of the free enzyme. The Michaelis constant (Km) for covalently bound glucoamylase was lower than that for free enzyme, i.e., the affinity for substrate improves upon immobilization. This shows that diffusional effects are completely eliminated in the FBR. Both immobilized systems showed almost 100% initial activity after 96 h of continuous operation. Covalent binding demonstrated better operational stability.
Resumo:
Activation energy for crystallization (Ec) is a pertinent parameter that decides the application potential of many metallic glasses and is proportional to the crystallization temperature. Higher crystallization temperatures are desirable for soft magnetic applications, while lower values for data storage purposes. In this investigation, from the heating rate dependence of peak crystallization temperature Tp, the Ec values have been evaluated by three different methods for metglas 2826 MB (Fe40Ni38B18Mo4) accurately. The Ec values are correlated with the morphological changes, and the structural evolution associated with annealing temperatures is discussed.
Resumo:
National Centre for Aquatic Animal Health, Cochin University of Science and Technology
Resumo:
The present study on naoplankton is based on the isolation and development of unialgai culturas from the inshore waters at Cochin. characterization of their growth assimilation products. ecophysioiogy and evaluation of nutritional quality. The work was carried out during the period 1980-1983. The nanoplankters were isolated and grown in the labratory as batch cultures to study the increase in cell population, the photosynthetic pigment: ana physioiogical activity. The chemical composition of these organisms and their rate of excretion were also determined. The environmental factors physical and chemical that influence the growth of these Cultures were defined by conducting independentexperiments. These cultures of the isolated nanoplankters have raised indoor and fed to the larvae of edible oyster to test their suitability as live-food.
Resumo:
Urea-formaldehyde resins find numerous applications in adhesive, textile finishing and moulded plastic industries. Kinetic investigations of the reactions of urea and its related compounds with formaldehyde in aqueous acid, alkaline and neutral media have been carried out. A thin—layer chromatographic method was developed for the separation and estimation of the products of these reactions. Using this technique the various initial steps in the reactions were analysed and the rate constants have been determined.
Resumo:
Rubber ferrite composites were prepared by incorporating nickel ferrite in a neoprene rubber matrix. Kinetics of the cure reaction were determined from the rheometric torque values and found to follow first-order kinetics. Analysis of the swelling behavior of the rubber ferrite composites in toluene elucidates the mechanism of solvent penetration and sorption characteristics, and reveals the extent of the physical interaction of the ferrite particles with the neoprene rubber matrix. Mechanical properties of rubber ferrite composites were determined, which support the reinforcing nature of nickel ferrite to the neoprene rubber matrix. These results show that magnetic composites with the required processing safety can be prepared economically by incorporating higher amounts of nickel ferrite in the neoprene rubber matrix