50 resultados para Honeycomb and Sandwich Cantilever Beam

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sandwich construction is a special form of the laminated composite consisting of light weight core, sandwiched between two stiff thin face sheets. Due to high stiffness to weight ratio, sandwich construction is widely adopted in aerospace industries. As a process dependent bonded structure, the most severe defects associated with sandwich construction are debond (skin core bond failure) and dent (locally deformed skin associated with core crushing). Reasons for debond may be attributed to initial manufacturing flaws or in service loads and dent can be caused by tool drops or impacts by foreign objects. This paper presents an evaluation on the performance of honeycomb sandwich cantilever beam with the presence of debond or dent, using layered finite element models. Dent is idealized by accounting core crushing in the core thickness along with the eccentricity of the skin. Debond is idealized using multilaminate modeling at debond location with contact element between the laminates. Vibration and buckling behavior of metallic honeycomb sandwich beam with and without damage are carried out. Buckling load factor, natural frequency, mode shape and modal strain energy are evaluated using finite element package ANSYS 13.0. Study shows that debond affect the performance of the structure more severely than dent. Reduction in the fundamental frequencies due to the presence of dent or debond is not significant for the case considered. But the debond reduces the buckling load factor significantly. Dent of size 8-20% of core thickness shows 13% reduction in buckling load capacity of the sandwich column. But debond of the same size reduced the buckling load capacity by about 90%. This underscores the importance of detecting these damages in the initiation level itself to avoid catastrophic failures. Influence of the damages on fundamental frequencies, mode shape and modal strain energy are examined. Effectiveness of these parameters as a damage detection tool for sandwich structure is also assessed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New mathematical methods to analytically investigate linear acoustic radiation and scattering from cylindrical bodies and transducer arrays are presented. Three problems of interest involving cylinders in an infinite fluid are studied. In all the three problems, the Helmholtz equation is used to model propagation through the fluid and the beam patterns of arrays of transducers are studied. In the first problem, a method is presented to determine the omni-directional and directional far-field pressures radiated by a cylindrical transducer array in an infinite rigid cylindrical baffle. The solution to the Helmholtz equation and the displacement continuity condition at the interface between the array and the surrounding water are used to determine the pressure. The displacement of the surface of each transducer is in the direction of the normal to the array and is assumed to be uniform. Expressions are derived for the pressure radiated by a sector of the array vibrating in-phase, the entire array vibrating in-phase, and a sector of the array phase-shaded to simulate radiation from a rectangular piston. It is shown that the uniform displacement required for generating a source level of 220 dB ref. μPa @ 1m that is omni directional in the azimuthal plane is in the order of 1 micron for typical arrays. Numerical results are presented to show that there is only a small difference between the on-axis pressures radiated by phased cylindrical arrays and planar arrays. The problem is of interest because cylindrical arrays of projectors are often used to search for underwater objects. In the second problem, the errors, when using data-independent, classical, energy and split beam correlation methods, in finding the direction of arrival (DOA) of a plane acoustic wave, caused by the presence of a solid circular elastic cylindrical stiffener near a linear array of hydrophones, are investigated. Scattering from the effectively infinite cylinder is modeled using the exact axisymmetric equations of motion and the total pressures at the hydrophone locations are computed. The effect of the radius of the cylinder, a, the distance between the cylinder and the array, b, the number of hydrophones in the array, 2H, and the angle of incidence of the wave, α, on the error in finding the DOA are illustrated using numerical results. For an array that is about 30 times the wavelength and for small angles of incidence (α<10), the error in finding the DOA using the energy method is less than that using the split beam correlation method with beam steered to α; and in some cases, the error increases when b increases; and the errors in finding the DOA using the energy method and the split beam correlation method with beam steered to α vary approximately as a7 / 4 . The problem is of interest because elastic stiffeners – in nearly acoustically transparent sonar domes that are used to protect arrays of transducers – scatter waves that are incident on it and cause an error in the estimated direction of arrival of the wave. In the third problem, a high-frequency ray-acoustics method is presented and used to determine the interior pressure field when a plane wave is normally incident on a fluid cylinder embedded in another infinite fluid. The pressure field is determined by using geometrical and physical acoustics. The interior pressure is expressed as the sum of the pressures due to all rays that pass through a point. Numerical results are presented for ka = 20 to 100 where k is the acoustic wavenumber of the exterior fluid and a is the radius of the cylinder. The results are in good agreement with those obtained using field theory. The directional responses, to the plane wave, of sectors of a circular array of uniformly distributed hydrophones in the embedded cylinder are then computed. The sectors are used to simulate linear arrays with uniformly distributed normals by using delays. The directional responses are compared with the output from an array in an infinite homogenous fluid. These outputs are of interest as they are used to determine the direction of arrival of the plane wave. Numerical results are presented for a circular array with 32 hydrophones and 12 hydrophones in each sector. The problem is of interest because arrays of hydrophones are housed inside sonar domes and acoustic plane waves from distant sources are scattered by the dome filled with fresh water and cause deterioration in the performance of the array.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years scientists have made rapid and significant advances in the field of semiconductor physics. One of the most important fields of current interest in materials science is the fundamental aspects and applications of conducting transparent oxide thin films (TCO). The characteristic properties of such coatings are low electrical resistivity and high transparency in the visible region. The first semitransparent and electrically conducting CdO film was reported as early as in 1907 [1]. Though early work on these films was performed out of purely scientific interest, substantial technological advances in such films were made after 1940. The technological interest in the study of transparent semiconducting films was generated mainly due to the potential applications of these materials both in industry and research. Such films demonstrated their utility as transparent electrical heaters for windscreens in the aircraft industry. However, during the last decade, these conducting transparent films have been widely used in a variety of other applications such as gas sensors [2], solar cells [3], heat reflectors [4], light emitting devices [5] and laser damage resistant coatings in high power laser technology [6]. Just a few materials dominate the current TCO industry and the two dominant markets for TCO’s are in architectural applications and flat panel displays. The architectural use of TCO is for energy efficient windows. Fluorine doped tin oxide (FTO), deposited using a pyrolysis process is the TCO usually finds maximum application. SnO2 also finds application ad coatings for windows, which are efficient in preventing radiative heat loss, due to low emissivity (0.16). Pyrolitic tin oxide is used in PV modules, touch screens and plasma displays. However indium tin oxide (ITO) is mostly used in the majority of flat panel display (FPD) applications. In FPDs, the basic function of ITO is as transparent electrodes. The volume of FPD’s produced, and hence the volume of ITO coatings produced, continues to grow rapidly. But the current increase in the cost of indium and the scarcity of this material created the difficulty in obtaining low cost TCOs. Hence search for alternative TCO materials has been a topic of active research for the last few decades. This resulted in the development of binary materials like ZnO, SnO2, CdO and ternary materials like II Zn2SnO4, CdSb2O6:Y, ZnSO3, GaInO3 etc. The use of multicomponent oxide materials makes it possible to have TCO films suitable for specialized applications because by altering their chemical compositions, one can control the electrical, optical, chemical and physical properties. But the advantages of using binary materials are the easiness to control the chemical compositions and depositions conditions. Recently, there were reports claiming the deposition of CdO:In films with a resistivity of the order of 10-5 ohm cm for flat panel displays and solar cells. However they find limited use because of Cd-Toxicity. In this regard, ZnO films developed in 1980s, are very useful as these use Zn, an abundant, inexpensive and nontoxic material. Resistivity of this material is still not very low, but can be reduced through doping with group-III elements like In, Al or Ga or with F [6]. Hence there is a great interest in ZnO as an alternative of ITO. In the present study, we prepared and characterized transparent and conducting ZnO thin films, using a cost effective technique viz Chemical Spray Pyrolysis (CSP). This technique is also suitable for large area film deposition. It involves spraying a solution, (usually aqueous) containing soluble salts of the constituents of the desired compound, onto a heated substrate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we report the use of the dual beam thermal lens technique as a quantitative method to determine absolute fluorescence quantum efficiency and concentration quenching of fluorescence emission from rhodamine 6G doped Poly(methyl methacrylate) (PMMA), prepared with different concentrations of the dye. A comparison of the present data with that reported in the literature indicates that the observed variation of fluorescence quantum yield with respect to the dye concentration follows a similar profile as in the earlier reported observations on rhodamine 6G in solution. The photodegradation of the dye molecules under cw laser excitation is also studied using the present method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study, radio frequency plasma polymerization technique is used to prepare thin films of polyaniline, polypyrrole, poly N-methyl pyrrole and polythiophene. The thermal characterization of these films is carried out using transverse probe beam deflection method. Electrical conductivity and band gaps are also determined. The effect of iodine doping on electrical conductivity and the rate of heat diffusion is explored.Bulk samples of poyaniline and polypyrrole in powder form are synthesized by chemical route. Open photoacoustic cell configuration is employed for the thermal characterization of these samples. The effect of acid doping on heat diffusion in these bulk samples of polyaniline is also investigated. The variation of electrical conductivity of doped polyaniline and polypyrrole with temperature is also studied for drawing conclusion on the nature of conduction in these samples. In order to improve the processability of polyaniline and polypyrrole, these polymers are incorporated into a host matrix of poly vinyl chloride. Measurements of thermal diffusivity and electrical conductivity of these samples are carried out to investigate the variation of these quantities as a function of the content of polyvinyl chloride.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This 'study' deals with a preliminary study of automatic beam steering properly in conducting polyaniline . Polyaniline in its undoped and doped .state was prepared from aniline by the chemical oxidative polymerization method. Dielectric properties of the samples were studied at S-band microwave frequencies using cavity perturbation technique. It is found that undoped po/vanihne is having greater dielectric loss and conductivity contpared with the doped samples. The beam steering property is studied using a perspex rod antenna and HP 85/OC vector network analyzer. The shift in the radiated beam is studied for different do voltages. The results show that polyaniline is a good nutterial far beam steering applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(methyl)methacrylate was made photoconducting by molecular doping and the photoconductivity was investigated using modulated photocurrent technique . Low-temperature current-voltage measurements showed that the transport mechanism was thermally activated hopping. An experimental investigation of the photoconductivity action spectrum along with theoretical calculation enabled an estimation of the diffusion coefficient of the material. The presence of states with a distribution of lifetimes could be understood from the frequency response of the photocurrent . The photocurrent was due to the field-assisted dissociation of these states

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(methyl)methacrylate was made photoconducting by molecular doping and the photoconductivity was investigated using modulated photocurrent technique . Low-temperature current-voltage measurements showed that the transport mechanism was thermally activated hopping. An experimental investigation of the photoconductivity action spectrum along with theoretical calculation enabled an estimation of the diffusion coefficient of the material. The presence of states with a distribution of lifetimes could be understood from the frequency response of the photocurrent . The photocurrent was due to the field-assisted dissociation of these states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Young’s modulus and Poisson’s ratio of high-quality silicon nitride films with 800 nm thickness, grown on silicon substrates by low-pressure chemical vapor deposition, were determined by measuring the dispersion of laser-induced surface acoustic waves. The Young’s modulus was also measured by mechanical tuning of commercially available silicon nitride cantilevers, manufactured from the same material, using the tapping mode of a scanning force microscope. For this experiment, an expression for the oscillation frequencies of two-media beam systems is derived. Both methods yield a Young’s modulus of 280–290 GPa for amorphous silicon nitride, which is substantially higher than previously reported (E5146 GPa). For Poisson’s ratio, a value of n 50.20 was obtained. These values are relevant for the determination of the spring constant of the cantilever and the effective tip–sample stiffness

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photothermal effect refers to heating of a sample due to the absorption of electromagnetic radiation. Photothermal (PT) heat generation which is an example of energy conversion has in general three kinds of applications. 1. PT material probing 2. PT material processing and 3. PT material destruction. The temperatures involved increases from 1-. 3. Of the above three, PT material probing is the most important in making significant contribution to the field of science and technology. Photothermal material characterization relies on high sensitivity detection techniques to monitor the effects caused by PT material heating of a sample. Photothermal method is a powerful high sensitivity non-contact tool used for non-destructive thermal characterization of materials. The high sensitivity of the photothermal methods has led to its application for analysis of low absorbance samples. Laser calorimetry, photothermal radiometry, pyroelectric technique, photoacoustic technique, photothermal beam deflection technique, etc. come under the broad class ofphotothermal techniques. However the choice of a suitable technique depends upon the nature of the sample, purpose of measurement, nature of light source used, etc. The present investigations are done on polymer thin films employing photothermal beam deflection technique, for the successful determination of their thermal diffusivity. Here the sample is excited by a He-Ne laser (A = 6328...\ ) which acts as the pump beam. Due to the refractive index gradient established in the sample surface and in the adjacent coupling medium, another optical beam called probe beam (diode laser, A= 6500A ) when passed through this region experiences a deflection and is detected using a position sensitive detector and its output is fed to a lock-in amplifier from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the signal is suitably analysed for determining the thermal diffusivity.The production of polymer thin film samples has gained considerable attention for the past few years. Plasma polymerization is an inexpensive tool for fabricating organic thin films. It refers to formation of polymeric materials under the influence of plasma, which is generated by some kind of electric discharge. Here plasma of the monomer vapour is generated by employing radio frequency (MHz) techniques. Plasma polymerization technique results in homogeneous, highly adhesive, thermally stable, pinhole free, dielectric, highly branched and cross-linked polymer films. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer.Near IR overtone investigations on some organic molecules using local mode model are also done. Higher vibrational overtones often provide spectral simplification and greater resolution of peaks corresponding to nonequivalent X-H bonds where X is typically C, N or O. Vibrational overtone spectroscopy of molecules containing X-H oscillators is now a well established tool for molecular investigations. Conformational and steric differences between bonds and structural inequivalence ofCH bonds (methyl, aryl, acetylenic, etc.) are resolvable in the higher overtone spectra. The local mode model in which the X-H oscillators are considered to be loosely coupled anharmonic oscillators has been widely used for the interpretation of overtone spectra. If we are exciting a single local oscillator from the vibrational ground state to the vibrational state v, then the transition energy of the local mode overtone is given by .:lE a......v = A v + B v2 • A plot of .:lE / v versus v will yield A, the local mode frequency as the intercept and B, the local mode diagonal anharmonicity as the slope. Here A - B gives the mechanical frequency XI of the oscillator and B = X2 is the anharmonicity of the bond. The local mode parameters XI and X2 vary for non-equivalent X-H bonds and are sensitive to the inter and intra molecular environment of the X-H oscillator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Material synthesizing and characterization has been one of the major areas of scientific research for the past few decades. Various techniques have been suggested for the preparation and characterization of thin films and bulk samples according to the industrial and scientific applications. Material characterization implies the determination of the electrical, magnetic, optical or thermal properties of the material under study. Though it is possible to study all these properties of a material, we concentrate on the thermal and optical properties of certain polymers. The thermal properties are detennined using photothermal beam deflection technique and the optical properties are obtained from various spectroscopic analyses. In addition, thermal properties of a class of semiconducting compounds, copper delafossites, arc determined by photoacoustic technique.Photothermal technique is one of the most powerful tools for non-destructive characterization of materials. This forms a broad class of technique, which includes laser calorimetry, pyroelectric technique, photoacollstics, photothermal radiometric technique, photothermal beam deflection technique etc. However, the choice of a suitable technique depends upon the nature of sample and its environment, purpose of measurement, nature of light source used etc. The polynler samples under the present investigation are thermally thin and optically transparent at the excitation (pump beam) wavelength. Photothermal beam deflection technique is advantageous in that it can be used for the detennination of thermal diffusivity of samples irrespective of them being thermally thick or thennally thin and optically opaque or optically transparent. Hence of all the abovementioned techniques, photothemlal beam deflection technique is employed for the successful determination of thermal diffusivity of these polymer samples. However, the semi conducting samples studied are themlally thick and optically opaque and therefore, a much simpler photoacoustic technique is used for the thermal characterization.The production of polymer thin film samples has gained considerable attention for the past few years. Different techniques like plasma polymerization, electron bombardment, ultra violet irradiation and thermal evaporation can be used for the preparation of polymer thin films from their respective monomers. Among these, plasma polymerization or glow discharge polymerization has been widely lIsed for polymer thin fi Im preparation. At the earlier stages of the discovery, the plasma polymerization technique was not treated as a standard method for preparation of polymers. This method gained importance only when they were used to make special coatings on metals and began to be recognized as a technique for synthesizing polymers. Thc well-recognized concept of conventional polymerization is based on molecular processcs by which thc size of the molecule increases and rearrangemcnt of atoms within a molecule seldom occurs. However, polymer formation in plasma is recognized as an atomic process in contrast to the above molecular process. These films are pinhole free, highly branched and cross linked, heat resistant, exceptionally dielectric etc. The optical properties like the direct and indirect bandgaps, refractive indices etc of certain plasma polymerized thin films prepared are determined from the UV -VIS-NIR absorption and transmission spectra. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer. The thermal diffusivity has been measured using the photothermal beam deflection technique as stated earlier. This technique measures the refractive index gradient established in the sample surface and in the adjacent coupling medium, by passing another optical beam (probe beam) through this region and hence the name probe beam deflection. The deflection is detected using a position sensitive detector and its output is fed to a lock-in-amplifIer from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the deflection signal is suitably analyzed for determining the thermal diffusivity.Another class of compounds under the present investigation is copper delafossites. These samples in the form of pellets are thermally thick and optically opaque. Thermal diffusivity of such semiconductors is investigated using the photoacoustic technique, which measures the pressure change using an elcctret microphone. The output of the microphone is fed to a lock-in-amplificr to obtain the amplitude and phase from which the thermal properties are obtained. The variation in thermal diffusivity with composition is studied.