5 resultados para Homeostasis Model Assessment
em Cochin University of Science
Resumo:
The hazards associated with major accident hazard (MAH) industries are fire, explosion and toxic gas releases. Of these, toxic gas release is the worst as it has the potential to cause extensive fatalities. Qualitative and quantitative hazard analyses are essential for the identitication and quantification of the hazards associated with chemical industries. This research work presents the results of a consequence analysis carried out to assess the damage potential of the hazardous material storages in an industrial area of central Kerala, India. A survey carried out in the major accident hazard (MAH) units in the industrial belt revealed that the major hazardous chemicals stored by the various industrial units are ammonia, chlorine, benzene, naphtha, cyclohexane, cyclohexanone and LPG. The damage potential of the above chemicals is assessed using consequence modelling. Modelling of pool fires for naphtha, cyclohexane, cyclohexanone, benzene and ammonia are carried out using TNO model. Vapor cloud explosion (VCE) modelling of LPG, cyclohexane and benzene are carried out using TNT equivalent model. Boiling liquid expanding vapor explosion (BLEVE) modelling of LPG is also carried out. Dispersion modelling of toxic chemicals like chlorine, ammonia and benzene is carried out using the ALOHA air quality model. Threat zones for different hazardous storages are estimated based on the consequence modelling. The distance covered by the threat zone was found to be maximum for chlorine release from a chlor-alkali industry located in the area. The results of consequence modelling are useful for the estimation of individual risk and societal risk in the above industrial area.Vulnerability assessment is carried out using probit functions for toxic, thermal and pressure loads. Individual and societal risks are also estimated at different locations. Mapping of threat zones due to different incident outcome cases from different MAH industries is done with the help of Are GIS.Fault Tree Analysis (FTA) is an established technique for hazard evaluation. This technique has the advantage of being both qualitative and quantitative, if the probabilities and frequencies of the basic events are known. However it is often difficult to estimate precisely the failure probability of the components due to insufficient data or vague characteristics of the basic event. It has been reported that availability of the failure probability data pertaining to local conditions is surprisingly limited in India. This thesis outlines the generation of failure probability values of the basic events that lead to the release of chlorine from the storage and filling facility of a major chlor-alkali industry located in the area using expert elicitation and proven fuzzy logic. Sensitivity analysis has been done to evaluate the percentage contribution of each basic event that could lead to chlorine release. Two dimensional fuzzy fault tree analysis (TDFFTA) has been proposed for balancing the hesitation factor invo1ved in expert elicitation .
Resumo:
The service quality of any sector has two major aspects namely technical and functional. Technical quality can be attained by maintaining technical specification as decided by the organization. Functional quality refers to the manner which service is delivered to customer which can be assessed by the customer feed backs. A field survey was conducted based on the management tool SERVQUAL, by designing 28 constructs under 7 dimensions of service quality. Stratified sampling techniques were used to get 336 valid responses and the gap scores of expectations and perceptions are analyzed using statistical techniques to identify the weakest dimension. To assess the technical aspects of availability six months live outage data of base transceiver were collected. The statistical and exploratory techniques were used to model the network performance. The failure patterns have been modeled in competing risk models and probability distribution of service outage and restorations were parameterized. Since the availability of network is a function of the reliability and maintainability of the network elements, any service provider who wishes to keep up their service level agreements on availability should be aware of the variability of these elements and its effects on interactions. The availability variations were studied by designing a discrete time event simulation model with probabilistic input parameters. The probabilistic distribution parameters arrived from live data analysis was used to design experiments to define the availability domain of the network under consideration. The availability domain can be used as a reference for planning and implementing maintenance activities. A new metric is proposed which incorporates a consistency index along with key service parameters that can be used to compare the performance of different service providers. The developed tool can be used for reliability analysis of mobile communication systems and assumes greater significance in the wake of mobile portability facility. It is also possible to have a relative measure of the effectiveness of different service providers.
Resumo:
The nearshore marine ecosystem is a dynamic environment impacted by many activities, especially the coastal waters and sediments contiguous to major urban areas. Although heavy metals are natural constituents of the marine environment, inputs are considered to be conservative pollutants and are potentially toxic, accumulate in the sediment, are bioconcentrated by organisms and may cause health problems to humans via the food chain. A variety of metals in trace amounts are essential for biological processes in all organisms, but excessive levels can be detrimental by acting as enzyme inhibitors. Discharge of industrial wastewater, agriculture runoff and untreated sewage pose a particularly serious threat to the coastal environment of Kerala, but there is a dearth of studies in documenting the contaminant metals. This study aimed principally to assess such contamination by examining the results of heavy metal (Cu, Pb, Cr, Ni, Zn, Cd and Hg) analysis in seawater, sediment and benthic biota from a survey of five transects along the central and northern coast of Kerala in 2008 covering a 10.0 km stretch of near shore environment in each transect. Trophic transfer of metal contaminants from aquatic invertebrates to its predators was also assessed, by employing a suitable benthic food chain model in order to understand which all metals are undergoing biotransference (transfer of metals from a food source to consumer).The study of present contamination levels will be useful for potential environmental remediation and ecosystem restoration at contaminated sites and provides a scientific basis for standards and protective measures for the coastal waters and sediments. The usefulness of biomonitor proposed in this study would allow identification of different bioavailable metals as well as provide an assessment of the magnitude of metal contamination in the coastal marine milieu. The increments in concentration of certain metals between the predator and prey discerned through benthic food chain can be interpreted as evidence of biotransference.
Resumo:
Regional climate models are becoming increasingly popular to provide high resolution climate change information for impacts assessments to inform adaptation options. Many countries and provinces requiring these assessments are as small as 200,000 km2 in size, significantly smaller than an ideal domain needed for successful applications of one-way nested regional climate models. Therefore assessments on sub-regional scales (e.g., river basins) are generally carried out using climate change simulations performed for relatively larger regions. Here we show that the seasonal mean hydrological cycle and the day-to-day precipitation variations of a sub-region within the model domain are sensitive to the domain size, even though the large scale circulation features over the region are largely insensitive. On seasonal timescales, the relatively smaller domains intensify the hydrological cycle by increasing the net transport of moisture into the study region and thereby enhancing the precipitation and local recycling of moisture. On daily timescales, the simulations run over smaller domains produce higher number of moderate precipitation days in the sub-region relative to the corresponding larger domain simulations. An assessment of daily variations of water vapor and the vertical velocity within the sub-region indicates that the smaller domains may favor more frequent moderate uplifting and subsequent precipitation in the region. The results remained largely insensitive to the horizontal resolution of the model, indicating the robustness of the domain size influence on the regional model solutions. These domain size dependent precipitation characteristics have the potential to add one more level of uncertainty to the downscaled projections.
Resumo:
Cement industry ranks 2nd in energy consumption among the industries in India. It is one of the major emitter of CO2, due to combustion of fossil fuel and calcination process. As the huge amount of CO2 emissions cause severe environment problems, the efficient and effective utilization of energy is a major concern in Indian cement industry. The main objective of the research work is to assess the energy cosumption and energy conservation of the Indian cement industry and to predict future trends in cement production and reduction of CO2 emissions. In order to achieve this objective, a detailed energy and exergy analysis of a typical cement plant in Kerala was carried out. The data on fuel usage, electricity consumption, amount of clinker and cement production were also collected from a few selected cement industries in India for the period 2001 - 2010 and the CO2 emissions were estimated. A complete decomposition method was used for the analysis of change in CO2 emissions during the period 2001 - 2010 by categorising the cement industries according to the specific thermal energy consumption. A basic forecasting model for the cement production trend was developed by using the system dynamic approach and the model was validated with the data collected from the selected cement industries. The cement production and CO2 emissions from the industries were also predicted with the base year as 2010. The sensitivity analysis of the forecasting model was conducted and found satisfactory. The model was then modified for the total cement production in India to predict the cement production and CO2 emissions for the next 21 years under three different scenarios. The parmeters that influence CO2 emissions like population and GDP growth rate, demand of cement and its production, clinker consumption and energy utilization are incorporated in these scenarios. The existing growth rate of the population and cement production in the year 2010 were used in the baseline scenario. In the scenario-1 (S1) the growth rate of population was assumed to be gradually decreasing and finally reach zero by the year 2030, while in scenario-2 (S2) a faster decline in the growth rate was assumed such that zero growth rate is achieved in the year 2020. The mitigation strategiesfor the reduction of CO2 emissions from the cement production were identified and analyzed in the energy management scenarioThe energy and exergy analysis of the raw mill of the cement plant revealed that the exergy utilization was worse than energy utilization. The energy analysis of the kiln system showed that around 38% of heat energy is wasted through exhaust gases of the preheater and cooler of the kiln sysetm. This could be recovered by the waste heat recovery system. A secondary insulation shell was also recommended for the kiln in the plant in order to prevent heat loss and enhance the efficiency of the plant. The decomposition analysis of the change in CO2 emissions during 2001- 2010 showed that the activity effect was the main factor for CO2 emissions for the cement industries since it is directly dependent on economic growth of the country. The forecasting model showed that 15.22% and 29.44% of CO2 emissions reduction can be achieved by the year 2030 in scenario- (S1) and scenario-2 (S2) respectively. In analysing the energy management scenario, it was assumed that 25% of electrical energy supply to the cement plants is replaced by renewable energy. The analysis revealed that the recovery of waste heat and the use of renewable energy could lead to decline in CO2 emissions 7.1% for baseline scenario, 10.9 % in scenario-1 (S1) and 11.16% in scenario-2 (S2) in 2030. The combined scenario considering population stabilization by the year 2020, 25% of contribution from renewable energy sources of the cement industry and 38% thermal energy from the waste heat streams shows that CO2 emissions from Indian cement industry could be reduced by nearly 37% in the year 2030. This would reduce a substantial level of greenhouse gas load to the environment. The cement industry will remain one of the critical sectors for India to meet its CO2 emissions reduction target. India’s cement production will continue to grow in the near future due to its GDP growth. The control of population, improvement in plant efficiency and use of renewable energy are the important options for the mitigation of CO2 emissions from Indian cement industries