12 resultados para Hollow gold
em Cochin University of Science
Resumo:
The present work deals with the texture, mineralogy and geochemistry of bedload sediments of the main stream of the Chaliyar basin, a typical small drainage system of the tropics enjoying heavy rain fall and moderate climate, located essentially in the Northern Kerala and flowing over the crystalline rocks (and their laterized duricrust) of the South Indian granulite terrain. As the Chaliyar is the major river draining the Wynad Gold Fields and is known for its placer gold occurrences, the thesis gives special emphasize on understanding the nature and distribution of detrital gold in sediments of the basin, while attempting to infer the provenance characteristics and factors involved in the evolution of sediments in general. Minerologically the chaliyar basin sands are quartzose. The quartz and feldspar contents in the coarse sand fraction of the basin range from 64 to 86% and 2 to 16% respectively. The Q/F ration ranges from 4 to 38 with a slight decrease in the lower reaches. Other minerals present include, hornblende, pyroxene and heavy minerals like opaques, garnet, rutile, biotite, spene, silliminite, zircon, apatite and monazite some of which are seen as inclusions in quartz. The major element composition of Chaliyar bedload sediments in the main channel and the headwater tributaries is related to the mineralogical and textual characteristics of sediments.
Resumo:
Dipyrromethene-Cu(II) derivatives possessing two dodecane alkyl chains have been used for the modification of gold electrodes. Electroactive host molecules have been incorporated into a lipophilic dodecanethiol SAM deposited onto gold electrodes through hydrophobic and van der Waals interactions (embedment technique). The presence of dipyrromethene-Cu(II) redox centers on the electrode surface was proved by cyclic voltammetry and Osteryoung square-wave voltammetry. The Au electrodes incorporating redox active Cu(II)-dipyrromethene SAMs were used for the direct voltammetric determination of paracetamol in human plasma.
Resumo:
The photoemission optogalvanic (POG) effect has been investigated in a neon-neodymium hollow cathode discharge using cw laser excitation. Both positive and negative effects were observed. It was found that the amplitude of the POG signal was unstable near the instability region of the discharge.
Resumo:
Laser-induced photoelectric and photoemission optogalvanic effects in a Ne-Nd hollow cathode discharge have been studied using a continuous wave laser source. The potential barrier for photoinduced electron emission from the cathode decreases as the applied voltage is increased. Owing to secondary electron emission in the plasma, the photocurrent is greater than that without discharge. The multiplication of secondary electrons and the quantum efficiency are also investigated.
Resumo:
We report the experimental observation of subcritical Hopf bifurcation and the existence of non-oscillating “windows” in the dynamics of a Ne-Nd hollow cathode discharge current as the control parameter.
Resumo:
We demonstrate the possibility of realizing, all-optical switching in gold nanosol. Two overlapping laser beams are used for this purpose, due to which a low-power beam passing collinear to a high-power beam will undergo cross phase modulation and thereby distort the spatial profile. This is taken to advantage for performing logic operations. We have also measured the threshold pump power to obtain a NOT gate and the minimum response time of the device. Contrary to the general notion that the response time of thermal effects used in this application is of the order of milliseconds, we prove that short pump pulses can result in fast switching. Different combinations of beam splitters and combiners will lead to the formation of other logic functions too.
Resumo:
The changes in emission characteristics of a neon hollow cathode discharge by resonant laser excitation of 1s 5→2p 2 and 1s 5→2p 4 transition have been studied by simultaneously monitoring the optogalvanic effect and the laser induced fluorescence. It has been observed that resonant excitation causes substantial variation in the relative intensities of lines in the emission spectrum of neon discharge.
Resumo:
The radiation characteristics of a new type of hollow dielectric H-plane sectoral horn antenna are presented. Metallic strips of optimum length are loaded on the H-walls of the sectoral horns. The effects of strip loading for producing square patterns in the H plane are discussed.
Resumo:
Most tropical aquatic environments are naturally fertile and their natural fertility is renewed very rapidly. Natural food for many cultivable organisms can be grown to the maximum by proper management. However, enrichment of the environment can be done through rational fertilization. Still further increase in stocking rates, can yield increased crop if adequate feeding is done. Thus fish and shellfish nutrition is an important aspect of the multidisciplinary subject of aquaculture. The oldest and most classical studies in physiology have investigated the nutritional needs of the species of interest to aquaculture. The alimentary requirements for proteins, lipids, mineral salts and vitamins have been established for some temperate species. But, the nutritional requirements of only few tropical species have been studied. Before formulating a diet, a thorough knowledge of the nutrient requirement of the species is essential. It is against this background that the present area of investigation has been identified. "Nutritional requirements of the fry of gold-spot mullet Liza parsia" is a comprehensive attempt to quantify the nutritional factors that are essential for producing healthy fingerlings for stocking the farms. Aspects such as the protein and lipid requirements of the fry, the vitamin essentiality, nutritive evaluation of protein and lipid sources suitable for compounding diets were covered in this research project. The ultimate aim has been to evolve practical diets which could be applied in the nursery phase for juvenile production.
Resumo:
Investigations on the design and development of certain new hollow dielectric hom antennas of rectangular cross section have been carried out. The main shortcoming of the existing ordinary hollow dielectric hom antenna (HDH) is the abrupt discontinuity at the feed-end. A new launching technique using a dielectric rod is introduced to overcome this limitation. Also a strip loading technique is employed for further modification of the antenna. Radiation parameters of new I-IDH antennas of Eplane sectoral, H-plane sectoral and pyramidal types were studied and are found to be very attractive. Theoretical approach based on Marcatili’s principle and two aperture theory along with diffraction theory and image theory is used to support the experimental findings. The HDH is considered as solid horn of effective dielectric constant and the aperture field is evaluated. The antenna is excited by the open waveguide in the dominant TE1o mode and so the existence of any hybrid mode is mled-out. The theoretical results are observed to be in good agreement with the experimental results.
Resumo:
Polymer Optical Fibers have occupied historically a place for large core flexible fibers operating in short distances. In addition to their practical passive application in short-haul communication they constitute a potential research field as active devices with organic dopants. Organic dyes are preferred as dopants over organic semiconductors due to their higher optical cross section. Thus organic dyes as gain media in a polymer fiber is used to develop efficient and narrow laser sources with a tunability throughout the visible region or optical amplifier with high gain. Dyes incorporated in fiber form has added advantage over other solid state forms such as films since the pump power required to excite the molecules in the core of the fiber is less thereby utilising the pump power effectively. In 1987, Muto et.al investigated a dye doped step index polymer fiber laser. Afterwards, numerous researches have been carried out in this area demonstrating laser emission from step index, graded index and hollow optical fibers incorporating various dyes. Among various dyes, Rhodamine6G is the most widely and commonly used laser dye for the last four decades. Rhodamine6G has many desirable optical properties which make it preferable over other organic dyes such as Coumarin, Nile Blue, Curcumin etc. The research focus on the implementation of efficient fiber lasers and amplifiers for short fiber distances. Developing efficient plastic lasers with electrical pumping can be a new proposal in this field which demands lowest possible threshold pump energy of the gain medium in the cavity as an important parameter. One way of improving the efficiency of the lasers, through low threshold pump energy, is by modifying the gain of the amplifiers in the resonator/cavity. Success in the field of Radiative Decay Engineering can pave way to this problem. Laser gain media consisting of dye-nanoparticle composites can improve the efficiency by lowering the lasing threshold and enhancing the photostability. The electric field confined near the surface of metal nanoparticles due to Localized Surface Plasmon Resonance can be very effective for the excitation of active centers to impart high optical gain for lasing. Since the Surface Plasmon Resonance of nanoparticles of gold and silver lies in the visible range, it can affect the spectral emission characteristics of organic dyes such as Rhodamine6G through plasmon field generated by the particles. The change in emission of the dye placed near metal nanoparticles depend on plasmon field strength which in turn depends on the type of metal, size of nanoparticle, surface modification of the particle and the wavelength of incident light. Progress in fabrication of different types of nanostructures lead to the advent of nanospheres, nanoalloys, core-shell and nanowires to name a few. The thesis deals with the fabrication and characterisation of polymer optical fibers with various metallic and bimetallic nanostructures incorporated in the gain media for efficient fiber lasers with low threshold and improved photostability.