20 resultados para Histologic lip measurements and analyses
em Cochin University of Science
Resumo:
In this regard Schiff base complexes have attracted wide attention. Furthermore, such complexes are found to play important role in analytical chemistry, organic synthesis, metallurgy, refining of metals, electroplating and photography. Many Schiff base complexes are reported in literature. Their properties depend on the nature of the metal ion as well as on the nature of the ligand. By altering the ligands it is possible to obtain desired electronic environment around the metal ion. Thus there is a continuing interest in the synthesis of simple and zeolite encapsulated Schiff base complexes of metal ions. Zeolites have a number of striking structural similarities to the protein portion of natural enzymes. Zeolite based catalysts are known for their remarkable ability of mimicking the chemistry of biological systems. In view of the importance of catalysts in all the areas of modern chemical industries, an effort has been made to synthesize some simple Schiff base complexes, heterogenize them by encapsulating within the supercages of zeoliteY cavities and to study their applications. The thesis deals with studies on the synthesis and characterization of some simple and zeoliteY encapsulated Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexes and on the catalytic activity of these complexes on some oxidation reactions. Simple complexes were prepared from the Schiff base ligands SBT derived from 2-aminobenzothiazole and salicylaldehyde and the ligand VBT derived from 2-aminobenzothiazole and vanillin (4-hydroxy-3- methoxybenzaldehyde). ZeoliteY encapsulated Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexes of Schiff base ligands SBT and VBT and also of 2-aminobenzothiazole were synthesized. All the prepared complexes were characterized using the physico-chemical techniques such as chemical analysis (employing AAS and CHN analyses), magnetic moment studies, conductance measurements and electronic and FTIR spectra. EPR spectra of the Cu(II) complexes were also carried out to know the probable structures and nature of Cu(II) complexes. Thermogravimetric analyses were carried out to obtain the information regarding the thermal stability of various complexes. The successful encapsulations of the complexes within the cavities of zeoliteY were ascertained by XRD, surface area and pore volume analysis. Assignments of geometries of simple and zeoliteY encapsulated complexes are given in all the cases. Both simple and zeoliteY encapsulated complexes were screened for catalytic activity towards oxidation reactions such as decomposition of hydrogen peroxide, oxidation of benzaldehyde, benzyl alcohol, 1-propanol, 2-propanol and cyclohexanol.
Resumo:
Some new transition metal complexes of the Schiff base quinoxaline-2-car boxalidene-2-aminophenol (HQAP) have been synthesized and characterized by elemental analyses, conductance and magnetic measurements and IR and UV-Visible spectral studies. The complexes have the following empirical formulae: [Mn(QAP121, [Fe(QAPl2C1I, [Co(QAPl21, [Ni(QAP121 and [Cu(QAP121. A tetrahedral structure has been assigned for the manganese(=), cobalt(II1, nickel(II1 and copper(II1 complexes. For the iron(IIIl complex an octahedral dimeric structure has been suggested
Resumo:
This paper reports the synthesis of a series of six new polystyrene anchored metal complexes of Co(II), Fe(III), Ni(II), Cu(II), Zn(II), and dioxouanium(VI) using the polystyrene anchored Schiff base of 2-nitrobenzaldehyde and the corresponding metal salts. The metal salts used were anhydrous FeCl3, CoCl2 Æ 6H2O, Ni(CH3COO)2 Æ 4H2O, Cu(CH3- COO)2 Æ H2O, Zn(CH3COO)2 Æ 2H2O, and UO2(CH3COO) Æ 2H2O. Physico chemical characterizations have been made from diffuse reflectance and vibrational spectra, elemental analysis, magnetic measurements, and TG studies. The elemental analysis suggest a 1:2 metal:ligand ratio when the complexation has carried out at 70 C for about 12 h reflux. The ligand is monodentate and coordinates through the azomethine nitrogen. The Fe(III), Co(II), Ni(II), and Cu(II) complexes are all paramagnetic whereas Zn(II) and U(VI) are diamagnetic. Zn(II) is assigned a tetrahedral structure, Cu(II) and Co(II) are assigned a square planar structure and Fe(III), Ni(II), and U(VI) are all assigned an octahedral structure. The polystyrene anchored ligand has been developed as an excellent reagent for the removal of Cu(II). Optimum conditions have been developed for the removal of metal ion from solutions by studying the effect of change of concentration of metal ion, ligand, effect of pH, time of reflux, and interference effect of other ions. It was found that within a span of 20 min it is possible to remove 90% of the metal ion from a 30 ppm metal ion solution in the pH range 4–5.5.
Ultrasonic Study Of The Elastic Properties And Phase Transitions In Selected Mixed Sulphate Crystals
Resumo:
The thesis investigated the elastic properties and phase transitions in selected mixed sulphate crystals – Lithium Hydrazinium Sulphate [LiN2H2SO4], Lithium Ammonium Sulphate [LiNH4SO4] and Lithium Potassium Sulphate [LiKSO4] – using ultrasonic technique. The pulse echo overlap technique has been used for measuring ultrasonic velocity and its dependence on temperature along different directions with waves of longitudinal and transverse polarizations. Two major numerical techniques and the corresponding computer programs developed as part of present work are presented in this thesis. All the 9 elastic constants of LHS are determined accurately from ultrasonic measurements and applying misorientation correction refines the constants. Ultrasonic measurements are performed in LAS to determine the elastic constants and to study the low temperature phase transitions. Temperature variation studies of elastic constant of LAS are performed for 6 different modes of propagation for heating and cooling at low temperatures. All the 5 independent elastic constants of LPS is determined using ultrasonic measurements. It is concluded that LPS crystal does not undergo a phase transition near this temperature. A comparison of the three crystals studied shows that LPS has maximum number of phase transitions and LHS has the least number. It is interesting to note that LPS has the simplest formula unit among the three. There is considerable scope for the future work on these crystals and others belonging to the sulphate family.
Resumo:
Laser induced plasma (LIP) emissions from some metal oxide targets were studied with corresponding metal targets of pure quality as a reference. Atomic emissions in the visible region were used in the spectroscopic procedures of LIP characterization. The studies were meant to throw light into LIP dynamics and they provided many experimental results which improved the general awareness of plasma state.When target materials were photo-ablated with an energetically suitable laser pulse, they developed electric charges in them.An electrical signal which was delivered from the target served as an alternative probe signal for the diagnostics of LIP and to track different charged states in the plasma. The signal showed a double peak distribution with positive polarity and a modified time of flight with various voltage levels of a given polarity.The expansion dynamics of LIP in magnetic field were also investigated by monitoring the voltage transients generated at the target.
Resumo:
The electron donor properties of Nd2O3 activated at 300, 500 and 800°C were investigated through studies on the adsorption of electron acceptors of various electron affinities - 7, 7, 8,8-tetracyanoquinodimethane (2.84 eV). 2, 3, 5, 6-tetrachloro-l , 4-benzoquinone (2.40 eV). p-dinitrobenzene (1.77 eV), and m-dinitrobenzene (1.26 eV) in solvents acetonitrile and 1, 4-dioxan. The extent of electron transfer during adsorption has been found from magnetic measurements and electronic spectral data. The corresponding data on mixed oxides of neodymium and aluminium are reported for various. compositions. The acid-base properties of catalysts were also determined using a set of Hammett indicators.
Resumo:
Glucoamylase was immobilized on acid activated montmorillonite clay via two different procedures namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and the activity of immobilized glucoamylase for starch hydrolysis was determined in a batch reactor. XRD shows intercalation of enzyme into the clay matrix during both immobilization procedures. Intercalation occurs via the side chains of the amino acid residues, the entire polypeptide backbone being situated at the periphery of the clay matrix. 27Al NMR studies revealed the different nature of interaction of enzyme with the support for both immobilization techniques. N2 adsorption measurements indicated a sharp drop in surface area and pore volume for the covalently bound glucoamylase that suggested severe pore blockage. Activity studies were performed in a batch reactor. The adsorbed and covalently bound glucoamylase retained 49% and 66% activity of the free enzyme respectively. They showed enhanced pH and thermal stabilities. The immobilized enzymes also followed Michaelis–Menten kinetics. Km was greater than the free enzyme that was attributed to an effect of immobilization. The immobilized preparations demonstrated increased reusability as well as storage stability.
Resumo:
Invertase was adsorbed onto micro-porous acid-activated montmorillonite clay (K-10) by two procedures, namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, surface area measurements and 27Al NMR. XRD measurements revealed an expansion of clay layers due to immobilization which suggests that intercalation had taken place. Surface area measurements also support this observation. 27Al NMR showed that interaction of enzyme with tetrahedral and octahedral Al changes with the immobilization procedure. Sucrose hydrolysis was performed in a batch reactor. The immobilized enzymes showed enhanced pH and thermal stabilities. Optimum pH and temperature were found to increase upon immobilization. The effectiveness factor (η) and Michaelis constant (Km) suggest that diffusional resistances play a major role in the reaction. The immobilized invertase could be stored in buffer of pH 5 and 6 at 5 °C without any significant loss in activity for 20 days.
Resumo:
Three enzymes, α-amylase, glucoamylase and invertase, were immobilized on acid activated montmorillonite K 10 via two independent techniques, adsorption and covalent binding. The immobilized enzymes were characterized by XRD, N2 adsorption measurements and 27Al MAS-NMR spectroscopy. The XRD patterns showed that all enzymes were intercalated into the clay inter-layer space. The entire protein backbone was situated at the periphery of the clay matrix. Intercalation occurred through the side chains of the amino acid residues. A decrease in surface area and pore volume upon immobilization supported this observation. The extent of intercalation was greater for the covalently bound systems. NMR data showed that tetrahedral Al species were involved during enzyme adsorption whereas octahedral Al was involved during covalent binding. The immobilized enzymes demonstrated enhanced storage stability. While the free enzymes lost all activity within a period of 10 days, the immobilized forms retained appreciable activity even after 30 days of storage. Reusability also improved upon immobilization. Here again, covalently bound enzymes exhibited better characteristics than their adsorbed counterparts. The immobilized enzymes could be successfully used continuously in the packed bed reactor for about 96 hours without much loss in activity. Immobilized glucoamylase demonstrated the best results.
Resumo:
The electron donor properties of Pr6O11 activated at 300. 500 and 800°C are reported from the studies on adsorption of electron acceptors of various electron affinity (7. 7, 8, 8-tetracyanoquinodimethane. 2, 3. 5, 6-tetrachloro-l, 4-benzoquin one. p-dinitrobenzene. and m-dinitrobenzene) in three solvents (acetonitrile, 1,4-dioxan and ethyl acetate). The extent of electron transfer during adsorption is understood from magnetic measurements and ESR spectral data. The corresponding data on mixed oxides of Pr and Al are reported for various compositions, The acid / base properties of these oxides are determined using a set of Hammett indicators.
Resumo:
Glucoamylase from Aspergillus Niger was immobilized on montmorillonite clay (K-10) by two procedures, adsorption and covalent binding. The immobilized enzymes were characterized using XRD, surface area measurements and 27Al MAS NMR and the activity of the immobilized enzymes for starch hydrolysis was tested in a fixed bed reactor (FBR). XRD shows that enzyme intercalates into the inter-lamellar space of the clay matrix with a layer expansion up to 2.25 nm. Covalently bound glucoamylase demonstrates a sharp decrease in surface area and pore volume that suggests binding of the enzyme at the pore entrance. NMR studies reveal the involvement of octahedral and tetrahedral Al during immobilization. The performance characteristics in FBR were evaluated. Effectiveness factor (η) for FBR is greater than unity demonstrating that activity of enzyme is more than that of the free enzyme. The Michaelis constant (Km) for covalently bound glucoamylase was lower than that for free enzyme, i.e., the affinity for substrate improves upon immobilization. This shows that diffusional effects are completely eliminated in the FBR. Both immobilized systems showed almost 100% initial activity after 96 h of continuous operation. Covalent binding demonstrated better operational stability.
Resumo:
The current work deals with the synthesis and characterization of metal complexes derived from some substituted acylhydrazones. The hydrazones under investigation were characterized by IR, UV, NMR spectral studies and the molecular structure of one of the hydrazones was solved by single crystal XRD studies. In the present work dioxovanadium(V), manganese(II), cobalt(II/III), nickel(II), copper(II), zinc(II) and cadmium(II) complexes were synthesized and characterized by various spectroscopic techniques, molar conductance measurements, magnetic susceptibility measurements and cyclic voltammetry. Single crystals of some of the complexes were isolated and characterized by single crystal X-ray diffraction.The thesis is divided into eight chapters. Chapter 1 gives an introduction on hydrazones, diversity in their chelating behavior and their application in various fields. This chapter also describes different analytical techniques employed for the characterization of hydrazones and their metal complexes. Chapter 2 includes the synthesis and characterization of two substituted acylhydrazones. This chapter also discusses how the coordination behavior of hydrazones under investigation is interesting. Chapters 3-8 discuss the synthesis and characterization of some transition metal complexes derived from the acylhydrazones under study.The hydrazones synthesized were found to exist in the amido form. Various characterization techniques were carried out to explore the structure of the synthesized complexes. The results indicate that both the hydrazones coordinate through the pyridyl and azomethine nitrogens and amide oxygen either in enolate or neutral form. Out of synthesized complexes V(V), Zn/Cd(II) and one of the cobalt complex was found to diamagnetic. We could isolate single crystals of some of the complexes and most of the complexes crystallized were found to have a distorted octahedral geometry. Thus X-ray crystallographic study which was used as major tool in the structure determination revealed that the hydrazones undergo a rotation about the azomethine bond on complexation. We hope the work presented in the thesis would be helpful for those who are working in the field of metal complexes and can further they can be utilized for various applications.
Resumo:
In this thesis, we present the results of our investigations on the photoconducting and electrical switching properties of selected chalcogenide glass systems. We have used XRD and X-ray photoelectron spectroscopy (XPS) analysis for confinuing the amorphous nature of these materials and for confirming their constituents respectively.Photoconductivity is the enhancement in electrical conductivity of materials brought about by the motion of charge carriers excited by absorbed radiation. The phenomenon involves absorption, photogeneration, recombination and transport processes and it gives good insight into the density of states in the energy gap of solids due to the presence of impurities and lattice defects. Photoconductivity measurements lead to the determination of such important parameters as quantum efficiency, photosensiti\'ity, spectral sensitivity and carrier lifetime. Extensive research work on photoconducting properties of amorphous semiconductors has resulted in the development of a variety of very sensitive photodetectors. Photoconductors are finding newer and newer uses eyery day. CdS, CdSe. Sb2S3, Se, ZnO etc, are typical photoconducting materials which are used in devices like vidicons, light amplifiers, xerography equipment etc.Electrical switching is another interesting and important property possessed by several Te based chalcogenides. Switching is the rapid and reversible transition between a highly resistive OFF state, driven by an external electric field and characterized by a threshold voltage, and a low resistivity ON state, Switching can be either threshold type or memory type. The phenomenon of switching could find applications in areas like infonnation storage, electrical power control etc. Investigations on electrical switching in chalcogenide glasses help in understanding the mechanism of switching which is necessary to select and modify materials for specific switching applications.Analysis of XRD pattern gives no further infonuation about amorphous materials than revealing their disordered structure whereas x-ray photoelectron spectroscopy,XPS) provides information about the different constituents present in the material. Also it gives binding energies (b.e.) of an element in different compounds and hence b.e. shift from the elemental form.Our investigations have been concentrated on the bulk glasses, Ge-In-Se, Ge-Bi-Se and As-Sb-Se for photoconductivity measurements and In-Te for electrical switching. The photoconducting properties of Ge-Sb-Se thin films prepared by sputtering technique have also been studied. The bulk glasses for the present investigations are prepared by the melt quenching technique and are annealed for half an hour at temperatures just below their respective glass transition temperatures. The dependence of photoconducting propenies on composition and temperature are investigated in each system. The electrical switching characteristics of In-Te system are also studied with different compositions and by varying the temperature.
Resumo:
The continually growing worldwide hazardous waste problem is receiving much attention lately. The development of cost effective, yet efficient methods of decontamination are vital to our success in solving this problem.Bioremediation using white rot fungi, a group of basidiomycetes characterized by their ability to degrade lignin by producing extracellular LiP, MnP and laccase have come to be recognized globally which is described in detail in Chapter 1.These features provide them with tremendous advantages over other micro-organisms.Chapter 2 deals with the isolation and screening of lignin degrading enzyme producing micoro-organisms from mangrove area. Marine microbes of mangrove area has great capacity to tolerate wide fluctuations of salinitie.Primary and secondary screening for lignin degrading enzyme producing halophilic microbes from mangrove area resulted in the selection of two fungal strains from among 75 bacteria and 26 fungi. The two fungi, SIP 10 and SIP ll, were identified as penicillium sp and Aspergillus sp respectively belonging to the class Ascomycetes .Specific activity of the purified LiP was 7923 U/mg protein. The purification fold was 24.07 while the yield was 18.7%. SDS PAGE of LiP showed that it was a low molecular weight protein of 29 kDa.Zymogram analysis using crystal violet dye as substrate confirmed the peroxidase nature of the purified LiP.The studies on the ability of purified LiP to decolorize different synthetic dyes was done. Among the dyes studied, crystal violet, a triphenyl methane dye was decolorized to the greatest extent.
Resumo:
While the quantum of advances from the public sector banks (PSBs) to the MSEs has increased over the years in absolute terms, from Rs.46, 045 crore in March 2000 to Rs.1, 85,208 crore in March 2009, the share of the 7credit to the MSE sector in the Net Bank Credit (NBC) has declined from 12.5 per cent to 10.9 per cent. Similarly, there has been a decline in the share of micro sector as a percentage of Net Bank Credit (NBC) from 7.8 per cent in March 2000 to 4.9% in March 2009. (TKA.Nair, 2010)9.The major reasons for low availability of bank finance to this sector are high risk perception of the banks in lending to MSEs and high transaction costs in processing of loan applications of MSEs. The problem is more serious for micro enterprises requiring small loans and the first generation entrepreneursThe thesis studies the divergence in guidelines by, CGTMSE, RBI & Bank of Baroda on collateral free lending and analyses the awareness of MSE about CGTMSE lending. The researcher tries to assess the problems faced by borrowers in availing advance under CGTMSE from Bank of Baroda, Kerala.