5 resultados para Hilbert symbol

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study on the fuzzy absolutes and related topics. The different kinds of extensions especially compactification formed a major area of study in topology. Perfect continuous mappings always preserve certain topological properties. The concept of Fuzzy sets introduced by the American Cyberneticist L. A Zadeh started a revolution in every branch of knowledge and in particular in every branch of mathematics. Fuzziness is a kind of uncertainty and uncertainty of a symbol lies in the lack of well-defined boundaries of the set of objects to which this symbol belongs. Introduce an s-continuous mapping from a topological space to a fuzzy topological space and prove that the image of an H-closed space under an s-continuous mapping is f-H closed. Here also proved that the arbitrary product fi and sum of  fi of the s-continuous maps fi are also s-continuous. The original motivation behind the study of absolutes was the problem of characterizing the projective objects in the category of compact spaces and continuous functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is to look the effect of change in the ordering of the Fourier system on Szegö’s classical observations of asymptotic distribution of eigenvalues of finite Toeplitz forms.This is done by checking proofs and Szegö’s properties in the new set up.The Fourier system is unconditional [19], any arbitrary ordering of the Fourier system forms a basis for the Hilbert space L2 [-Π, Π].Here study about the classical Szegö’s theorem.Szegö’s type theorem for operators in L2(R+) and check its validity for certain multiplication operators.Since the trigonometric basis is not available in L2(R+) or in L2(R) .This study discussed about the classes of orderings of Haar System in L2 (R+) and in L2(R) in which Szegö’s Type TheoreT Am is valid for certain multiplication operators.It is divided into two sections. In the first section there is an ordering to Haar system in L2(R+) and prove that with respect to this ordering, Szegö’s Type theorem holds for general class of multiplication operators Tƒ with multiplier ƒ ε L2(R+), subject to some conditions on ƒ.Finally in second section more general classes of ordering of Haar system in L2(R+) and in L2(R) are identified in such a way that for certain classes of multiplication operators the asymptotic distribution of eigenvalues exists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Department of Mathematics, Cochin University of Science and Technology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis Entitled Spectral theory of bounded self-adjoint operators -A linear algebraic approach.The main results of the thesis can be classified as three different approaches to the spectral approximation problems. The truncation method and its perturbed versions are part of the classical linear algebraic approach to the subject. The usage of block Toeplitz-Laurent operators and the matrix valued symbols is considered as a particular example where the linear algebraic techniques are effective in simplifying problems in inverse spectral theory. The abstract approach to the spectral approximation problems via pre-conditioners and Korovkin-type theorems is an attempt to make the computations involved, well conditioned. However, in all these approaches, linear algebra comes as the central object. The objective of this study is to discuss the linear algebraic techniques in the spectral theory of bounded self-adjoint operators on a separable Hilbert space. The usage of truncation method in approximating the bounds of essential spectrum and the discrete spectral values outside these bounds is well known. The spectral gap prediction and related results was proved in the second chapter. The discrete versions of Borg-type theorems, proved in the third chapter, partly overlap with some known results in operator theory. The pure linear algebraic approach is the main novelty of the results proved here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While channel coding is a standard method of improving a system’s energy efficiency in digital communications, its practice does not extend to high-speed links. Increasing demands in network speeds are placing a large burden on the energy efficiency of high-speed links and render the benefit of channel coding for these systems a timely subject. The low error rates of interest and the presence of residual intersymbol interference (ISI) caused by hardware constraints impede the analysis and simulation of coded high-speed links. Focusing on the residual ISI and combined noise as the dominant error mechanisms, this paper analyses error correlation through concepts of error region, channel signature, and correlation distance. This framework provides a deeper insight into joint error behaviours in high-speed links, extends the range of statistical simulation for coded high-speed links, and provides a case against the use of biased Monte Carlo methods in this setting