20 resultados para High power factor (HPF)

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high power Nz laser of the double-Blumlein type having a modified gas flow system, electrode configuration, and discharge geometry with minimum inductance is described. By incorporating a triggere’d-pressurized spark gap switch, arc-free operation was achieved for a wide E/P range. The device gives a peak power in excess of 700 kW with a FWHM of 3 ns and an efficiency of 0.51%, which is remarkably high for a pulsed nitrogen laser system. The dependence of output power on parameters such as operating pressure, voltage, and repetition rate are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid developments in fields such as fibre optic communication engineering and integrated optical electronics have expanded the interest and have increased the expectations about guided wave optics, in which optical waveguides and optical fibres play a central role. The technology of guided wave photonics now plays a role in generating information (guided-wave sensors) and processing information (spectral analysis, analog-to-digital conversion and other optical communication schemes) in addition to its original application of transmitting information (fibre optic communication). Passive and active polymer devices have generated much research interest recently because of the versatility of the fabrication techniques and the potential applications in two important areas – short distant communication network and special functionality optical devices such as amplifiers, switches and sensors. Polymer optical waveguides and fibres are often designed to have large cores with 10-1000 micrometer diameter to facilitate easy connection and splicing. Large diameter polymer optical fibres being less fragile and vastly easier to work with than glass fibres, are attractive in sensing applications. Sensors using commercial plastic optical fibres are based on ideas already used in silica glass sensors, but exploiting the flexible and cost effective nature of the plastic optical fibre for harsh environments and throw-away sensors. In the field of Photonics, considerable attention is centering on the use of polymer waveguides and fibres, as they have a great potential to create all-optical devices. By attaching organic dyes to the polymer system we can incorporate a variety of optical functions. Organic dye doped polymer waveguides and fibres are potential candidates for solid state gain media. High power and high gain optical amplification in organic dye-doped polymer waveguide amplifier is possible due to extremely large emission cross sections of dyes. Also, an extensive choice of organic dye dopants is possible resulting in amplification covering a wide range in the visible region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years scientists have made rapid and significant advances in the field of semiconductor physics. One of the most important fields of current interest in materials science is the fundamental aspects and applications of conducting transparent oxide thin films (TCO). The characteristic properties of such coatings are low electrical resistivity and high transparency in the visible region. The first semitransparent and electrically conducting CdO film was reported as early as in 1907 [1]. Though early work on these films was performed out of purely scientific interest, substantial technological advances in such films were made after 1940. The technological interest in the study of transparent semiconducting films was generated mainly due to the potential applications of these materials both in industry and research. Such films demonstrated their utility as transparent electrical heaters for windscreens in the aircraft industry. However, during the last decade, these conducting transparent films have been widely used in a variety of other applications such as gas sensors [2], solar cells [3], heat reflectors [4], light emitting devices [5] and laser damage resistant coatings in high power laser technology [6]. Just a few materials dominate the current TCO industry and the two dominant markets for TCO’s are in architectural applications and flat panel displays. The architectural use of TCO is for energy efficient windows. Fluorine doped tin oxide (FTO), deposited using a pyrolysis process is the TCO usually finds maximum application. SnO2 also finds application ad coatings for windows, which are efficient in preventing radiative heat loss, due to low emissivity (0.16). Pyrolitic tin oxide is used in PV modules, touch screens and plasma displays. However indium tin oxide (ITO) is mostly used in the majority of flat panel display (FPD) applications. In FPDs, the basic function of ITO is as transparent electrodes. The volume of FPD’s produced, and hence the volume of ITO coatings produced, continues to grow rapidly. But the current increase in the cost of indium and the scarcity of this material created the difficulty in obtaining low cost TCOs. Hence search for alternative TCO materials has been a topic of active research for the last few decades. This resulted in the development of binary materials like ZnO, SnO2, CdO and ternary materials like II Zn2SnO4, CdSb2O6:Y, ZnSO3, GaInO3 etc. The use of multicomponent oxide materials makes it possible to have TCO films suitable for specialized applications because by altering their chemical compositions, one can control the electrical, optical, chemical and physical properties. But the advantages of using binary materials are the easiness to control the chemical compositions and depositions conditions. Recently, there were reports claiming the deposition of CdO:In films with a resistivity of the order of 10-5 ohm cm for flat panel displays and solar cells. However they find limited use because of Cd-Toxicity. In this regard, ZnO films developed in 1980s, are very useful as these use Zn, an abundant, inexpensive and nontoxic material. Resistivity of this material is still not very low, but can be reduced through doping with group-III elements like In, Al or Ga or with F [6]. Hence there is a great interest in ZnO as an alternative of ITO. In the present study, we prepared and characterized transparent and conducting ZnO thin films, using a cost effective technique viz Chemical Spray Pyrolysis (CSP). This technique is also suitable for large area film deposition. It involves spraying a solution, (usually aqueous) containing soluble salts of the constituents of the desired compound, onto a heated substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is entitled “OPTICAL EMISSION DIAGNOSTICS OF LASER PRODUCED PLASMA FROM GRAPHITE AND YBa2Cu3O7. The work presented in this thesis covers the experimental results on the plasma produced with moderately high power laser with irradiance range in between 10 GW cm 2 to 100 GW cm -2. The characterization of laser produced plasma from solid targets viz. graphite and high temperature superconducting material like YBa2Cu3O7 have been carried out. The fundamental frequency from a Q - switched Nd: YAG laser with 9 ns pulse duration is used for the present studies. Various optical emission emission diagnostic techniques were employed for the the characterization of the LPP which include emission spectroscopy, time resolved studies, line broadening method etc. In order to understand the physical nature of the LPP like recombination, collisional excitation and the laser interaction with plasma, the time resolved studies offer the most logical approach

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microwave dielectric ceramics based on RETiTaO6 (RE = La, Cc, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, Al, and In) were prepared using a conventional solid-state ceramic route. The structure and microstructure of the samples were analyzed using x-ray diffraction and scanning electron microscopy techniques. The sintered samples were characterized in the microwave frequency region. The ceramics based on Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy, which crystallize in orthorhombic aeschynite structure, had a relatively high dielectric constant and positive T f while those based on Ho, Er, and Yb, with orthorhombic euxenite structure, had a low dielectric constant and negative Tf. The RETiTaO6 ceramics had a high-quality factor. The dielectric constant and unit cell volume of the ceramics increased with an increase in ionic radius of the rare-earth ions, but density decreased with it. The value of Tf increased with an increase in RE ionic radii, and a change in the sign of Tf occurred when the ionic radius was between 0.90 and 0.92 A. The results indicated that the boundary of the aeschynite to euxenite morphotropic phase change lay between DyTiTaO6 and HoTiTaO6. Low-loss ceramics like ErTiTaO6 (Er = 20.6, Qxf = 85,500), EuTiTaO6 (Er = 41.3, Qxf = 59,500), and YTiTaO6 (Er = 22.1, Q„xf = 51,400) are potential candidates for dielectric resonator applications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microwave dielectric resonators (DRs) based on Ba(B1,2Nbi/2)03 [B' = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb, and In] complex perovskites have been prepared by conventional solid state ceramic route. The dielectric properties (relative permittivity, Er; quality factor, Q; and resonant frequency, rr) of the ceramics have been measured in the frequency range 4-6 GHz using resonance methods. The resonators have relatively high dielectric constant in the range 36-45, high quality factor and small temperature variation of resonant frequency. The dielectric properties are found to depend on the tolerance factor (t), ionic radius (r), and lattice parameter (ap)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesis deals with the fabrication and characterization of novel all-fiber components for access networks. All fiber components offer distinctive advantages due to low forward and backward losses, epoxy free optical path and high power handling. A novel fabrication method for monolithic 1x4 couplers, which are vital components in distributed passive optical networks, is realized. The fabrication method differs from conventional structures with a symmetric coupling profile and hence offers ultra wideband performance and easy process control. New structure for 1x4 couplers, by fusing five fibers is proposed to achieve high uniformity, which gives equivalent uniformity performance to 1x4 planar lightwave splitters, isolation in fused fiber WDM is improved with integration of long period gratings. Packaging techniques of fused couplers are analyzed for long term stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis presented the fabrication and characterisation of polymer optical fibers in their applications as optical amplifier and smart sensors.Optical polymers such as PMMA are found to be a very good host material due to their ability to incorporate very high concentration of optical gain media like fluorescent dyes and rare earth compounds. High power and high gain optical amplification in organic dye-doped polymer optical fibers is possible due to extremely large emission cross sections of oyes. Dye doped (Rhodamine 6G) optical fibers were fabricated by using indigenously developed polymer optical fiber drawing tower. Loss characterization of drawn dye doped fibers was carried out using side illumination technique. The advantage of the above technique is that it is a nondestructive method and can also be used for studying the uniformity in fiber diameter and doping. Sensitivity of the undoped polymer fibers to temperature and microbending were also studied in its application in smart sensors.Optical amplification studies using the dye doped polymer optical fibers were carried out and found that an amplification of l8dB could be achieved using a very short fiber of length lOcm. Studies were carried out in fibers with different dye concentrations and diameter and it was observed that gain stability was achieved at relatively high dye concentrations irrespective of the fiber diameter.Due to their large diameter, large numerical aperture, flexibility and geometrical versatility of polymer optical fibers it has a wide range of applications in the field of optical sensing. Just as in the case of conventional silica based fiber optic sensors, sensing techniques like evanescent wave, grating and other intensity modulation schemes can also be efficiently utilized in the case of POF based sensors. Since polymer optical fibers have very low Young's modulus when compared to glass fibers, it can be utilized for sensing mechanical stress and strain efficiently in comparison with its counterpart. Fiber optic sensors have proved themselves as efficient and reliable devices to sense various parameters like aging, crack formation, weathering in civil structures. A similar type of study was carried out to find the setting characteristics of cement paste used for constructing civil structures. It was found that the measurements made by using fiber optic sensors are far more superior than that carried out by conventional methods. More over,POF based sensors were found to have more sensitivity as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectroscopic analysis of the emission from the plasma produced by irradiating a highT c superconducting GdBa2Cu3O7 target with a high power Nd:YAG laser beam shows the existence of the bands from different oxides in addition to the lines from neutrals and ions of the constituent elements. The spectral emissions by oxide species in laser-induced plasma show considerable time delays as compared to those from neutral and ionic species. Recombination processes taking place during the cooling of the hot plasma, rather than the plasma expansion velocities, have been found to be responsible for the observed time delays in this case. The decays of emission intensities from various species are found to be non-exponential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate the possibility of realizing, all-optical switching in gold nanosol. Two overlapping laser beams are used for this purpose, due to which a low-power beam passing collinear to a high-power beam will undergo cross phase modulation and thereby distort the spatial profile. This is taken to advantage for performing logic operations. We have also measured the threshold pump power to obtain a NOT gate and the minimum response time of the device. Contrary to the general notion that the response time of thermal effects used in this application is of the order of milliseconds, we prove that short pump pulses can result in fast switching. Different combinations of beam splitters and combiners will lead to the formation of other logic functions too.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser-induced damage is the principal limiting constraint in the design and operation of high-power laser systems used in fusion and other high-energy laser applications. Therefore, an understanding of the mechanisms which cause the radiation damage to the components employed in building a laser and a knowledge of the damage threshold of these materials are of great importance in designing a laser system and to operate it without appreciable degradation in performance. This thesis, even though covers three distinct problems for investigations using a dye Q-switched multimode Nd:glass laser operating at 1062 nm and emitting 25 ns (FWHM) pulses, lays its main thrust on damage threshold studies on thin films. Using the same glass laser two-photon excited fluorescence in rhodamine 6G and generation and characterisation of a carbon plasma have also been carried out. The thesis is presented in seven chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis work has mainly concentrated on the investigation of the ,optical and thermal properties of binary semiconducting chalcogenide glasses belonging to the AivB¥5x and AZBXEX families. The technique used for these studies is a relatively new one namely, the photoacoustic (PA) technique. This technique is based on the detection of acoustic signal produced in an enclosed volume when the sample is irradiated by an intensity modulated radiation. The signal produced depends upon the optical properties of the sample, and the thermal properties of the sample, backing material and the surrounding gas. For the present studies an efficient signal beam gas-microphone PA spectrometer, consisting of a high power Xenon lamp, monochromator, light beam chopper, PA cell with microphone and lock-in amplifier, has been set up. Two PA cells have been fabricated: one for room temperature measurements and another for measurements at high temperatures. With the high temperature PA cell measurements can be taken upto 250°C. Provisions are incorporated. in both the cells to change the volume and to use different backing materials for the sample. The cells have been calibrated by measuring the frequency response of the cells using carbon black as the sample

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RMS measuring device is a nonlinear device consisting of linear and nonlinear devices. The performance of rms measurement is influenced by a number of factors; i) signal characteristics, 2) the measurement technique used and 3) the device characteristics. RMS measurement is not simple, particularly when the signals are complex and unknown. The problem of rms measurement on high crest-factor signals is fully discussed and a solution to this problem is presented in this thesis. The problem of rms measurement is systematically analized and found to have mainly three types of errors: (1) amplitude or waveform error 2) Frequency error and (3) averaging error. Various rms measurement techniques are studied and compared. On the basis of this study the rms -measurement is reclassified three categories: (1) Wave-form-error-free measurement (2) High-frequncy-error measurement and (3) Low-frequency error-free measurement. In modern digital sampled-data systems the signals are complex and waveform-error-free rms measurement is highly appreciated. Among the three basic blocks of rms measuring device the squarer is the most important one. A squaring technique is selected, that permits shaping of the squarer error characteristic in such a way as to achieve waveform-errob free rms measurement. The squarer is designed, fabricated and tested. A hybrid rms measurement using an analog rms computing device and digital display combines the speed of analog techniques and the resolution and ease of measurement of digital techniques. An A/D converter is modified to perform the square-rooting operation. A 10-V rms voltmeter using the developed rms detector is fabricated and tested. The chapters two, three and four analyse the problems involved in rms measurement and present a comparative study of rms computing techniques and devices. The fifth chapter gives the details of the developed rms detector that permits wave-form-error free rms measurement. The sixth chapter, enumerates the the highlights of the thesis and suggests a list of future projects

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser engineering is an area in which developments in the existing design concepts and technology appear at an alarming rate. Now—a-days, emphasis has shifted from innovation to cost reduction and system improvement. To a major extent, these studies are aimed at attaining larger power densities, higher system efficiency and identification of new lasing media and new lasing wavelengths. Todate researchers have put to use all the ditferent Forms of matter as lasing material. Laser action was observed For the first time in a gaseous system - the He-Ne system. This was Followed by a variety of solidstate and gas laser systems. Uarious organic dyes dissolved in suitable solvents were found to lase when pumped optically. Broad band emission characteristics of these dye molecules made wavelength tuning possible using optical devices. Laser action was also observed in certain p-n junctions of semiconductor materials and some of these systems are also tunable. The recent addition to this list was the observation of laser action from certain laser produced plasmas. The purpose of this investigation was to examine the design and Fabrication techniques of pulsed Nitrogen lasers and high power Nd: Glass laserso Attempt was also made to put the systems developed into certain related experiments