20 resultados para High metal loading

em Cochin University of Science


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Solid phase extraction (SPE) is a powerful technique for preconcentration/removal or separation of trace and ultra trace amounts of toxic and nutrient elements. SPE effectively simplifies the labour intensive sample preparation, increase its reliability and eliminate the clean up step by using more selective extraction procedures. The synthesis of sorbents with a simplified procedure and diminution of the risks of errors shows the interest in the areas of environmental monitoring, geochemical exploration, food, agricultural, pharmaceutical, biochemical industry and high purity metal designing, etc. There is no universal SPE method because the sample pretreatment depends strongly on the analytical demand. But there is always an increasing demand for more sensitive, selective, rapid and reliable analytical procedures. Among the various materials, chelate modified naphthalene, activated carbon and chelate functionalized highly cross linked polymers are most important. In the biological and environmental field, large numbers of samples are to be analysed within a short span of time. Hence, online flow injection methods are preferred as they allow extraction, separation, identification and quantification of many numbers of analytes. The flow injection online preconcentration flame AAS procedure developed allows the determination of as low as 0.1 µg/l of nickel in soil and cobalt in human hair samples. The developed procedure is precise and rapid and allows the analysis of 30 samples per hour with a loading time of 60 s. The online FI manifold used in the present study permits high sampling, loading rates and thus resulting in higher preconcentration/enrichment factors of -725 and 600 for cobalt and nickel respectively with a 1 min preconcentration time compared to conventional FAAS signal. These enrichment factors are far superior to hitherto developed on line preconcentration procedures for inorganics. The instrumentation adopted in the present study allows much simpler equipment and low maintenance costs compared to costlier ICP-AES or ICP-MS instruments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The semiconductor industry's urge towards faster, smaller and cheaper integrated circuits has lead the industry to smaller node devices. The integrated circuits that are now under volume production belong to 22 nm and 14 nm technology nodes. In 2007 the 45 nm technology came with the revolutionary high- /metal gate structure. 22 nm technology utilizes fully depleted tri-gate transistor structure. The 14 nm technology is a continuation of the 22 nm technology. Intel is using second generation tri-gate technology in 14 nm devices. After 14 nm, the semiconductor industry is expected to continue the scaling with 10 nm devices followed by 7 nm. Recently, IBM has announced successful production of 7 nm node test chips. This is the fashion how nanoelectronics industry is proceeding with its scaling trend. For the present node of technologies selective deposition and selective removal of the materials are required. Atomic layer deposition and the atomic layer etching are the respective techniques used for selective deposition and selective removal. Atomic layer deposition still remains as a futuristic manufacturing approach that deposits materials and lms in exact places. In addition to the nano/microelectronics industry, ALD is also widening its application areas and acceptance. The usage of ALD equipments in industry exhibits a diversi cation trend. With this trend, large area, batch processing, particle ALD and plasma enhanced like ALD equipments are becoming prominent in industrial applications. In this work, the development of an atomic layer deposition tool with microwave plasma capability is described, which is a ordable even for lightly funded research labs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid Crystalline DNA is emerging as an active area of research, due to its potential applications in diverse fields, ranging from nanoelectronics to therapeutics. Since, counter ion neutralization is an essential requirement for the expression of LC DNA, and the present level of understanding on the LC phase behavior of high molecular weight DNA is inadequate, a thorough investigation is required to understand the nature and stability of these phases under the influence of various cationic species. The present study is, therefore mainly focused on a comparative investigation of the effect of metal ions of varying charge, size, hydration and binding modes on the LC phase behavior of high molecular weight DNA. The main objectives of the works are investigations on the induction and stabilization of LC phases of high molecular weight DNA by alkali metal ions, investigations on the induction and stabilization of LC phases of high molecular weight DNA by alkaline earth metal ions, effects of multivalent, transition and heavy metal ions on the LC phase behavior of high molecular weight DNA and investigations on spermine induced LC behavior of high molecular weight DNA in the presence of alkali and alkaline earth metal ions. The critical DNA concentration (CD) required for the expression of LC phases, phase transitions and their stability varied considerably when the binding site of the metal ions changed from phosphate groups to the nitrogenous bases of DNA, with Li+ giving the highest stability. Multiple LC phases with different textures, sometimes diffused and unstable or otherwise mainly distinct and clear, were observed on mixing metal ions with DNA solutions, which in turn depended on the charge, size, hydration factor, binding modes, concentration of the metal ions and time. Molecular modeling studies on binding of selected metal ions to DNA supported the experimental findings

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare earth metal ion exchanged (La3+, Ce3+, RE3+) KFAU-Y zeolites were prepared by simple ion-exchange methods and have been characterized using different physico-chemical techniques. In this paper a novel application of solid acid catalysts in the dehydration/ Beckmann rearrangement of aldoximes; benzaldoxime and 4-methoxybenzaldoxime is reported. Dehydration/Beckmann rearrangement reactions of benzaldoxime and 4-methoxybenzaldoxime is carried out in a continuous down flow reactor at 473K. 4-Methoxybenzaldoxime gave both Beckmann rearrangement product (4-methoxyphenylformamide) and dehydration product (4-methoxybenzonitrile) in high overall yields. The difference in behavior of the aldoximes is explained in terms of electronic effects. The production of benzonitrile was near quantitative under heterogeneous reaction conditions. The optimal protocol allows nitriles to be synthesized in good yields through the dehydration of aldoximes. Time on stream studies show a fast decline in the activity of the catalyst due to neutralization of acid sites by the basic reactant and product molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present project was a systematic investigation of the physico-chemical properties and catalytic activity of some transition metal promoted sulphated zirconia systems. The characterisation and catalytic activity results were compared with that of pure Zr02 and simple sulphated zirconia systems. Sulphated zirconia samples were prepared by a controlled impregnation technique. In the case of metal incorporated systems, a single step impregnation was carried out using required amounts of sulphuric acid and metal salt solutions. As a preliminary step, optimisation of calcination temperature and sulphate content was achieved. For further studies, the optimised sulphate loading of 10 ml per gram of hydrous zirconium oxide and a calcination temperature of 700°C was employed. Metal incorporation had a positive influence on the physico-chemical properties. Vapour phase cumene conversion served as a test reaction for acidity. Some industrially important reactions like Friedel-Crafts reaction, phenol hydroxylation, nitration, etc. were selected to test the catalytic activity of the prepared systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rice husk silica was utilized as the promoter of ceria for preparing supported vanadia catalysts. Effect of vanadium content was investigated with 2–10 wt.% V2O5 loading over the support. Structural characterization of the catalysts was done by various techniques like energy dispersive X-ray (EDX), X-ray diffraction (XRD), BET surface area, thermal analysis (TGA/DTA), FT-infrared spectroscopy (FT-IR), UV–vis diffused reflectance spectroscopy (DR UV–vis), electron paramagnetic spectroscopy (EPR) and solid state magnetic resonance spectroscopies (29Si and 51V MASNMR). Catalytic activity was studied towards liquid-phase oxidation of benzene. Surface area of ceria enhanced upon rice husk silica promotion, thus makes dispersion of the active sites of vanadia easier. Highly dispersed vanadia was found for low V2O5 loading and formation of cerium orthovanadate (CeVO4) occurs as the loading increases. Spectroscopic investigation clearly confirms the formation of CeVO4 phase at higher loadings of V2O5. The oxidation activity increases with vanadia loading up to 8 wt.% V2O5, and further increase reduces the conversion rate. Selective formation of phenol can be attributed to the presence of highly dispersed active sites of vanadia over the support.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work undertakes the preparation and physico-chemical characterisation of iron promoted sulphated zirconia (SZ) with different amounts of iron loading and their application to Friedel-Crafts benzoylation of benzene, toluene and xylene under different experimental conditions, XRD and laser Raman techniques reveal the stabilisation of the tetragonal phase of zirconia and the existence of iron in highly dispersed form as Fe203 on the catalyst surface. The surface acidic properties were determined by ammonia temperature programmed desorption (TPD) and perylene adsorption, The results were supported by the TGA studies after adsorption of pyridine and 2,6-dimethylpyridine (2,6-DMP), Strong Lewis acid sites on the surface, which are evident from TPD and perylene adsorption studies. explain the high catalytic activity of the systems towards benzoylation. The experimental results provide evidence for the truly heterogeneous nature of the reaction. The studies also establish the resistance to deactivation in the metal incorporated sulphated systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis has discussed the development of a new metal ion doped panchromatic photopolymer for various holographic applications. High-quality panchromatic holographic recording material with high diffraction efficiency, high photosensitivity and high spatial resolution is one of the key factors for the successful recording of true colour holograms. The capability of the developed material for multicolour holography can be investigated.In the present work, multiplexing studies were carried out using He-Ne laser (632.8 nm). Multiplexing can be done using low wavelength lasers like Ar+ ion (488 nm) and frequency doubled Nd: YAG (532 nm) lasers, so as to increase the storage capacity. The photopolymer film studied had a thickness of only 130 Cm. Films with high thickness (~500 Cm) is highly essential for competitive holographic memories . Hence films with high thickness can be fabricated and efforts can be made to record more holograms or gratings in the material.In the present study, attempts were made to record data page in silver doped MBPVA/AA photopolymer film. Image of a checkerboard pattern was recorded in the film, which could be reconstructed with good image fidelity. Efforts can be made to determine the bit error rate (BER) which provides a quantitative measure of the image quality of the reconstructed image . Multiple holographic data pages can also be recorded in the material making use of different multiplexing techniques.Holographic optical elements (HOEs) are widely used in optical sensors, optical information processing, fibre optics, optical scanners and solar concentrators . The suitability of the developed film for recording holographic optical elements like lenses, beam splitters and filters can be studied.The suitability of a reflection hologram recorded in acrylamide based photopolymer for visual indication of environmental humidity is reported . Studies can be done to optimize the film composition for recording of reflection holograms.An improvement in the spatial resolution of PVA/acrylamide based photopolymer by using a low molecular-weight poly (vinyl alcohol) binder was recently reported . Effect of the molecular weight of the binder matrix on the holographic properties of the developed photopolymer system can be investigated.Incorporation of nanoparticles into photopolymer system is reported to enhance the resolution and improve the dimensional stability of the system . Hence efforts can be made to incorporate silver nanoparticles into the photopolymer and its influence on the holographic properties can be studied.This thesis was a small venture towards the realization of a big goal, a competent holographic recording material with excellent properties for practical holographic applications. As a result of the present research, we could successfully develop an efficient panchromatic photopolymer system and could demonstrate its suitability for recording transmission holograms and holographic data page. The developed photopolymer system is expected to have significant applications in the fields of true-color display holography, wavelength multiplexing holographic storage, and holographic optical elements. Highly concentrated and determined effort has yet to be put forth for this expectation to become a reality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in the thesis is centered around two important types of cathode materials, the spinel structured LixMn204 (x =0.8to1.2) and the phospho -oIivine structured LiMP04 (M=Fe and Ni). The spinel system LixMn204, especially LiMn204 corresponding to x= 1 has been extensively investigated to understand its structural electrical and electrochemical properties and to analyse its suitability as a cathode material in rechargeable lithium batteries. However there is no reported work on the thermal and optical properties of this important cathode material. Thermal diffusivity is an important parameter as far as the operation of a rechargeable battery is concerned. In LixMn204, the electronic structure and phenomenon of Jahn-Teller distortion have already been established theoretically and experimentally. Part of the present work is an attempt to use the non-destructive technique (NDT) of photoacoustic spectroscopy to investigate the nature of the various electronic transitions and to unravel the mechanisms leading to the phenomenon of J.T distortion in LixMn204.The phospho-olivines LiMP04 (M=Fe, Ni, Mn, Co etc) are the newly identified, prospective cathode materials offering extremely high stability, quite high theoretical specific capacity, very good cycIability and long life. Inspite of all these advantages, most of the phospho - olivines especially LiFeP04 and LiNiP04 show poor electronic conductivity compared to LixMn204, leading to low rate capacity and energy density. In the present work attempts have been made to improve the electronic conductivity of LiFeP04 and LiNiP04 by adding different weight percentage MWNT .It is expected that the addition of MWNT will enhance the electronic conductivity of LiFeP04 and LiNiP04 with out causing any significant structural distortions, which is important in the working of the lithium ion battery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of catalysis research is to apply the catalyst successfully in economically important reactions in an environmentally friendly way. The present work focuses on the modification of structural and surface properties of ceria and ceria-zirconia catalysts by the incorporation of transition metals. The applications of these catalysts in industrially important reactions like ethylbenzene oxidation, alkylation of aromatics are also investigated.Sol-gel method is effective for the preparation of transition metal modified ceria and ceria-zirconia mixed oxide since it produces catalyst with highly dispersed incorporated metal. Unlike that of impregnation method plugging of pores is not prominent for sol-gel derived catalyst materials. This prevents loss of surface area on metal modification as evident for BET surface area measurements.The powder X-ray diffraction analysis confirms the cubic structure of transition metal modified ceria and ceria-zirconia catalysts. The thermal stability is evident from TGA/DTA analysis. DR UV-vis spectra provide information on the coordination environment of the incorporated metal. EPR analysis ofCr, Mn and Cu modified ceria and a ceria-zirconia catalyst reveals the presence of different oxidation states of incorporated metal.Temperature programmed desorption of ammonia and thermogravimetric desorption of 2,6-dimethyl pyridine confirms the enhancement of acidity on metal incorporation. High a-methyl styrene selectivity in cumene cracking reaction implies the presence of comparatively more number of Lewis acid sites with some amount of Bronsted acid sites. The formation of cyclohexanone during cyclohexanol decomposition confirms the presence of basic sites on the catalyst surface.Mn and Cr modified catalysts show better activity towards ethylbenzene oxidation. A redox mechanism through oxometal pathway is suggested.All the catalysts were found to be active towards benzylation of toluene and a-xylene. The selectivity towards monoalkylated products remains almost 100%. The catalytic activity is correlated with the Lewis acidity of the prepared systems.The activity of the catalysts towards methylation of phenols depends on the strength acid sites as well as the redox properties of the catalysts. A strong dependence of methylation activity on the total acidity is illustrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer supports are efficient reagents,substrates and catalysts and they are extensively used for carrying out reactions at controlled rates.Tailor-made polymer supports are highly versatile which have opened an excellent area of research.Now polymer supported chemistry is being exploited at an amazing rate and it seems to join the routine world of organic synthesis.Polymer supported ligands are found to be efficient complexing agents whose high selectivity enables the analysis and removal of heavy metal ions which are toxic to all the living organisms of land and sea.polymer supported membranes function as ion selective potentiometric sensors which allow the exchange of specific ions among other ions of the same charge.In this investigation three series of polymeric schiff bases and three series of metal complexes have been prepared.An attempt is done to develop optimum conditions for the removal of heavy metal ions using polymeric schiff bases.A novel copper sensor electrode have also been prepared from polymer supported metal complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research work which was carried out to Synergic Reactions in the Estuarine Environment leading to Modulation of Aluminium metal during Transport Processes (in Cochin Estuary)Estuaries are considered as sink or source for terrestrial and various anthropogenically generated materials. These include naturally occurring elements Al, Si, Fe or trace inorganics or industrial pollutants of different types. There have been reports on both positive and negative impacts by the introduction of above materials into the ecosystem.This thesis deals with the trace metal Aluminium (Al) whose average concentration (about 8%) in the earths crust is surpassed only by that of Oxygen and Silicon. There can be no doubt that most of the land derived materials reaches the ocean through rivers via estuaries. An important aspect noticed here is that the concentration of dissolved Al is much lower in sea water than in river water.On critically analysing Cochin estuary, for the entire cycles, covering monsoon, postmonsoon and premonsoon, the following salient features are documented as hereunder. Dissolved Al exhibits high and variable trends in Cochin estuary, the influencing parameters being salinity, SPM, pH and dissolved Si. A general profile showed removal in upper/mid estuary followed by regeneration in the mid/lower estuary and further decrease seawards in the southern/northem arms.Distribution appears to be a function of freshwater input, the monsoon season exhibiting very high concentrations throughout the estuary. As the river discharge decreased with the progress of seasons, dissolved Al concentration also decreased, the metal limiting itself to the upper and mid estuary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear optics has been a rapidly growing field in recent decades since the invention of lasers. The systematic progress in the laser technology increases our efficiency in the generation and control of coherent optical radiations. Nonlinear optics is based on the study ofeffects and phenomena related to the interaction of intense coherent light radiation with matter. Compared to other light sources laser radiation can provide high directionality, high monochromaticiry, high brightness and high photon degeneracy. At such a very intense incident beam, the matter responds in a nonlinear manner to the incident radiation fields, which endows the media :1 characteristic to change the refractive index or absorption coe fflcient of the media or the wavelength, or the frequency of the incident electromagnetic waves. This thesis encompasses the fabrication of nonlinear optical devices based on semiconductor and metal nanostructures. The presented work focus on the experimental and theoretical discussions on nonlinear optical effects especially nonlinear absorption and refraction exhibitted by metal and semiconductor nanostructures

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Industrialization of our society has led to an increased production and discharge of both xenobiotic and natural chemical substances. Many of these chemicals will end up in the soil. Pollution of soils with heavy metals is becoming one of the most severe ecological and human health hazards. Elevated levels of heavy metals decrease soil microbial activity and bacteria need to develop different mechanisms to confer resistances to these heavy metals. Bacteria develop heavy-metal resistance mostly for their survivals, especially a significant portion of the resistant phenomena was found in the environmental strains. Therefore, in the present work, we check the multiple metal tolerance patterns of bacterial strains isolated from the soils of MG University campus, Kottayam. A total of 46 bacterial strains were isolated from different locations of the campus and tested for their resistant to 5 common metals in use (lead, zinc, copper, cadmium and nickel) by agar dilution method. The results of the present work revealed that there was a spatial variation of bacterial metal resistance in the soils of MG University campus, this may be due to the difference in metal contamination in different sampling location. All of the isolates showed resistance to one or more heavy metals selected. Tolerance to lead was relatively high followed by zinc, nickel, copper and cadmium. About 33% of the isolates showed very high tolerance (>4000μg/ml) to lead. Tolerance to cadmium (65%) was rather low (<100 μg/ml). Resistance to zinc was in between 100μg/ml - 1000μg/ml and the majority of them shows resistance in between 200μg/ml - 500μg/ml. Nickel resistance was in between 100μg/ml - 1000μg/ml and a good number of them shows resistance in between 300μg/ml - 400μg/ml. Resistance to copper was in between <100μg/ml - 500μg/ml and most of them showed resistance in between 300μg/ml - 400μg/ml. From the results of this study, it was concluded that heavy metal-resistant bacteria are widely distributed in the soils of MG university campus and the tolerance of heavy metals varied among bacteria and between locations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal matrix composites (MMC) having aluminium (Al) in the matrix phase and silicon carbide particles (SiCp) in reinforcement phase, ie Al‐SiCp type MMC, have gained popularity in the re‐cent past. In this competitive age, manufacturing industries strive to produce superior quality products at reasonable price. This is possible by achieving higher productivity while performing machining at optimum combinations of process variables. The low weight and high strength MMC are found suitable for variety of components