6 resultados para High Reliability

em Cochin University of Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.This dissertation contributes to an architecture oriented code validation, error localization and optimization technique assisting the embedded system designer in software debugging, to make it more effective at early detection of software bugs that are otherwise hard to detect, using the static analysis of machine codes. The focus of this work is to develop methods that automatically localize faults as well as optimize the code and thus improve the debugging process as well as quality of the code.Validation is done with the help of rules of inferences formulated for the target processor. The rules govern the occurrence of illegitimate/out of place instructions and code sequences for executing the computational and integrated peripheral functions. The stipulated rules are encoded in propositional logic formulae and their compliance is tested individually in all possible execution paths of the application programs. An incorrect sequence of machine code pattern is identified using slicing techniques on the control flow graph generated from the machine code.An algorithm to assist the compiler to eliminate the redundant bank switching codes and decide on optimum data allocation to banked memory resulting in minimum number of bank switching codes in embedded system software is proposed. A relation matrix and a state transition diagram formed for the active memory bank state transition corresponding to each bank selection instruction is used for the detection of redundant codes. Instances of code redundancy based on the stipulated rules for the target processor are identified.This validation and optimization tool can be integrated to the system development environment. It is a novel approach independent of compiler/assembler, applicable to a wide range of processors once appropriate rules are formulated. Program states are identified mainly with machine code pattern, which drastically reduces the state space creation contributing to an improved state-of-the-art model checking. Though the technique described is general, the implementation is architecture oriented, and hence the feasibility study is conducted on PIC16F87X microcontrollers. The proposed tool will be very useful in steering novices towards correct use of difficult microcontroller features in developing embedded systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

So far, in the bivariate set up, the analysis of lifetime (failure time) data with multiple causes of failure is done by treating each cause of failure separately. with failures from other causes considered as independent censoring. This approach is unrealistic in many situations. For example, in the analysis of mortality data on married couples one would be interested to compare the hazards for the same cause of death as well as to check whether death due to one cause is more important for the partners’ risk of death from other causes. In reliability analysis. one often has systems with more than one component and many systems. subsystems and components have more than one cause of failure. Design of high-reliability systems generally requires that the individual system components have extremely high reliability even after long periods of time. Knowledge of the failure behaviour of a component can lead to savings in its cost of production and maintenance and. in some cases, to the preservation of human life. For the purpose of improving reliability. it is necessary to identify the cause of failure down to the component level. By treating each cause of failure separately with failures from other causes considered as independent censoring, the analysis of lifetime data would be incomplete. Motivated by this. we introduce a new approach for the analysis of bivariate competing risk data using the bivariate vector hazard rate of Johnson and Kotz (1975).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cancer treatment is most effective when it is detected early and the progress in treatment will be closely related to the ability to reduce the proportion of misses in the cancer detection task. The effectiveness of algorithms for detecting cancers can be greatly increased if these algorithms work synergistically with those for characterizing normal mammograms. This research work combines computerized image analysis techniques and neural networks to separate out some fraction of the normal mammograms with extremely high reliability, based on normal tissue identification and removal. The presence of clustered microcalcifications is one of the most important and sometimes the only sign of cancer on a mammogram. 60% to 70% of non-palpable breast carcinoma demonstrates microcalcifications on mammograms [44], [45], [46].WT based techniques are applied on the remaining mammograms, those are obviously abnormal, to detect possible microcalcifications. The goal of this work is to improve the detection performance and throughput of screening-mammography, thus providing a ‘second opinion ‘ to the radiologists. The state-of- the- art DWT computation algorithms are not suitable for practical applications with memory and delay constraints, as it is not a block transfonn. Hence in this work, the development of a Block DWT (BDWT) computational structure having low processing memory requirement has also been taken up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present environment, industry should provide the products of high quality. Quality of products is judged by the period of time they can successfully perform their intended functions without failure. The cause of the failures can be ascertained through life testing experiments and the times to failure due to different cause are likely to follow different distributions. Knowledge of this distribution is essential to eliminate causes of failures and thereby to improve the quality and the reliability of products. The main accomplishment expected to the study is to develop statistical tools that could facilitate solution to lifetime data arising in such and similar contexts

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method for the fabrication of high uniformity monolithic 1 x 4 single mode fused coupler is described together with details of its performance in terms of coupling ratio, spectral response and uniformity. The fabricated device exhibits ultra-broadband performance with a port-to-port uniformity of 0.4 dB. The reliability of such couplers is also evaluated and found to have good stability. Moreover, by controlling the process parameters it is possible to control the power remaining in the through put port of the device, which can be used for dedicated non-intrusive network health monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method for the fabrication of high uniformity monolithic 1 x4 single-mode fused coupler is described together with details of its performance in terms of coupling ratio, spectral response and uniformity. The fabricated device exhibits ultra-broadband performance with a port-to-port uniformity of 0.4 dB. The reliability of such couplers is also evaluated and found to have good stability. Moreover, by controlling the process parameters it is possible to control the power remaining in the through put port of the device, which can be used for dedicated non-intrusive network health monitoring