2 resultados para Hierarchical sampling

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic catheterization is illustrated using vascular-access-port model SLA where the port is surgically placed subcutaneously on the back of the rat. The catheter is tunnelled to the neck and inserted into the jugular vein . Within 24 h rats showed normal blood pressure and blood samples were collected at intervals with minimal stress to the animals . A comparison of the plasma catecholamine of blood collected from vascular-access-ports with that obtained from decapitation indicates that there was minimal stress to the rats when blood was drawn through the vascular-access-port.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge discovery in databases is the non-trivial process of identifying valid, novel potentially useful and ultimately understandable patterns from data. The term Data mining refers to the process which does the exploratory analysis on the data and builds some model on the data. To infer patterns from data, data mining involves different approaches like association rule mining, classification techniques or clustering techniques. Among the many data mining techniques, clustering plays a major role, since it helps to group the related data for assessing properties and drawing conclusions. Most of the clustering algorithms act on a dataset with uniform format, since the similarity or dissimilarity between the data points is a significant factor in finding out the clusters. If a dataset consists of mixed attributes, i.e. a combination of numerical and categorical variables, a preferred approach is to convert different formats into a uniform format. The research study explores the various techniques to convert the mixed data sets to a numerical equivalent, so as to make it equipped for applying the statistical and similar algorithms. The results of clustering mixed category data after conversion to numeric data type have been demonstrated using a crime data set. The thesis also proposes an extension to the well known algorithm for handling mixed data types, to deal with data sets having only categorical data. The proposed conversion has been validated on a data set corresponding to breast cancer. Moreover, another issue with the clustering process is the visualization of output. Different geometric techniques like scatter plot, or projection plots are available, but none of the techniques display the result projecting the whole database but rather demonstrate attribute-pair wise analysis