5 resultados para Herpesvirus type 5

em Cochin University of Science


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study on the preparation , characterization and microwave dielectric properties of AnBn-1O3n (N=5,6,8) type perovskite compounds. The explored ceramics show dielectric constant between 11 and 54,quality factor in the range 2400 to 88900 GHz and Tf in the range -73 to +231ppm/0C.Most of the investigated cation deficient hexagonal perovskites show intermediate dielectric constant with high quality factors. This study gives a general introduction about material, scientific and technological aspects of DRs.Three important ,€r ,Q and Tf, used for the DR characterization are described. The relationship of the above parameters with the fundamental material characteristics is discussed. Different modes are excited when a DR is excited with suitable microwave spectrum of frequencies .A description of analytical determination of frequencies and construction of mode charts used for sample design and mode identification are also discussed. In this study several ceramics are developed for DR purposes, very little attention has been paid to grow the single crystals. It might be due to the fact that the difficulties and time involved in the growth of single crystals, big enough to function as microwave resonators make them expensive .However single crystals of these materials may have very high Q values. It is also possible that a better understanding of the dielectric properties in relation to the structure can be arrived using single crystals. Hence one of the future directions of dielectric resonator research should be to grow good quality single crystals of the above materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The reaction of aniline with methanol was carried out over Zn1-xNixFe2O4 (x= 0, 0.2, 0.5, 0.8 and 1) type systems in a fixed-bed down-flow reactor. It was observed that systems possessing low ``x'' values are highly selective and active for mono N-alkylation of aniline leading to N-methyl aniline. Selectivity for N-methyl aniline over ZnFe2O4 was more than 99% under the optimized reaction conditions. Even at methanol to aniline molar ratio of 2, the yield of N-methyl aniline was nearly 55.5%, whereas its yield exceeded 67% at the molar ratio of 7. The Lewis acid sites of the catalysts are mainly responsible for the good catalytic performance. Cation distribution in the spinel lattice influences their acido-basic properties, and hence, these factors have been considered as helpful to evaluate the activity and stability of the systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of ferrites having the general formula Zn1-xCoxFe2O4 (x=0, 0.2, 0.5, 0.8 and 1.0)were prepared by soft chemical route. The materials were characterized by adopting various physico-chemical methods. The reaction of aniline with methanol was studied in a fixed-bed reactor system as a potential source for the production of various methyl anilines. It was observed that systems possessing low ‘ x’ values are highly selective and active for N-monoalkylation of aniline leading to N-methylaniline. Reaction parameters were properly varied to optimize the reaction conditions for obtaining N-methylaniline selectively and in better yield. Among the systems Zn0.8Co0.2Fe2O4 is remarkable due to its very high activity and excellent stability. Under the optimized conditions N-methylaniline selectivity exceeded 98%. Even at a methanol to aniline molar ratio of 2, the yield of N-methylaniline was nearly 50%, whereas its yield exceeded 71% at the molar ratio of 5. ZnFe2O4, though executed better conversion than Zn0.8Co0.2Fe2O4 in the initial period of the run, deactivates quickly as the reaction proceeds. The Lewis acidity of the catalysts is mainly responsible for the good performance. Cation distribution in the spinel lattice influences their acido-basic properties and, hence, these factors have been considered as helpful parameters to evaluate the activity of the systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preparation of simple and mixed ferrospinels of nickel, cobalt and copper and their sulphated analogues by the room temperature coprecipitation method yielded fine particles with high surface areas. Study of the vapour phase decomposition of cyclohexanol at 300 °C over all the ferrospinel systems showed very good conversions yielding cyclohexene by dehydration and/or cyclohexanone by dehydrogenation, as the major products. Sulphation very much enhanced the dehydration activity over all the samples. A good correlation was obtained between the dehydration activities of the simple ferrites and their weak plus medium strength acidities (usually of the Brφnsted type) determined independently by the n-butylamine adsorption and ammonia-TPD methods. Mixed ferrites containing copper showed a general decrease in acidities and a drastic decrease in dehydration activities. There was no general correlation between the basicity parameters obtained by electron donor studies and the ratio of dehydrogenation to dehydration activities. There was a leap in the dehydrogenation activities in the case of all the ferrospinel samples containing copper. Along with the basic properties, the redox properties of copper ion have been invoked to account for this added activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present studies, various copper delafossite materials viz; CuAlO2, CuGaO2, CuFeO2 , CuGa1-xFexO2, CuYO2 and CuCaxY1-xO2 were synthesised by solid state reaction technique. These copper delafossite materials were grown in thin film form by rf magnetron sputtering technique. In general copper delafossites exhibit good optical transparency. The conductivity of the CuYO2 could be improved by Ca doping or by oxygen intercalation by annealing the film in oxygen atmosphere. It has so far been impossible to improve the p-type conductivity of CuGaO2 significantly by doping Mg or Ca on the Ga site. The ptype conductivity is presumed to be due to oxygen doping or Cu Vacancies [6]. Reports in literature show, oxygen intercalation or divalent ion doping on Ga site is not possible for CuGaO2 thin films to improve the p-type conductivity. Sintered powder and crystals of CuFeO2 have been reported as the materials having the highest p-type conductivity [14, 15] among the copper and silver delafossites. However the CuFeO2 films are found to be less transparent in the visible region compared to CuGaO2. Hence in the present work, the solid solution between the CuGaO2 and CuFeO2 was effected by solid state reaction, varying the Fe content. The CuGa1-xFexO2 with Fe content, x=0.5 shows an increase in conductivity by two orders, compared to CuGaO2 but the transparency is only about 50% in the visible region which is less than that of CuGaO2 The synthesis of α−AgGaO2 was carried out by two step process which involves the synthesis of β-AgGaO2 by ion exchange reaction followed by the hydrothermal conversion of the β-AgGaO2 into α-AgGaO2. The trace amount of Ag has been reduced substantially in the two step synthesis compared to the direct hydrothermal synthesis. Thin films of α-AgGaO2 were prepared on silicon and Al2O3 substrates by pulsed laser deposition. These studies indicate the possibility of using this material as p-type material in thin film form for transparent electronics. The room temperature conductivity of α-AgGaO2 was measured as 3.17 x 10-4 Scm-1and the optical band gap was estimated as 4.12 eV. A transparent p-n junction thin film diode on glass substrate was fabricated using p-type α-AgGaO2 and n-ZnO.AgCoO2 thin films with 50% transparency in the visible region were deposited on single crystalline Al2O3 and amorphous silica substrates by RF magnetron sputtering and p type conductivity of AgCoO2 was demonstrated by fabricating transparent p-n junction diode with AgCoO2 as p-side and ZnO: Al as n-side using sputtering. The junction thus obtained was found to be rectifying with a forward to reverse current of about 10 at an applied voltage of 3 V.The present study shows that silver delafossite thin films with p-type conductivity can be used for the fabrication of active devices for transparent electronics applications.