9 resultados para Heat equation in finance
em Cochin University of Science
Resumo:
In this paper, we report the in-plane and cross-plane measurements of the thermal diffusivity of double epitaxial layers of n-type GaAs doped with various concentrations of Si and a p-type Be-doped GaAs layer grown on a GaAs substrate by the molecular beam epitaxial method, using the laser-induced nondestructive photothermal deflection technique. The thermal diffusivity value is evaluated from the slope of the graph of the phase of the photothermal deflection signal as a function of pump-probe offset. Analysis of the data shows that the cross-plane thermal diffusivity is less than that of the in-plane thermal diffusivity. It is also seen that the doping concentration has a great influence on the thermal diffusivity value. Measurement of p-type Be-doped samples shows that the nature of the dopant also influences the effective thermal diffusivity value. The results are interpreted in terms of a phonon-assisted heat transfer mechanism and the various scattering process involved in the propagation of phonons.
Resumo:
In this paper, we report the in-plane and cross-plane measurements of the thermal diffusivity of double epitaxial layers of n-type GaAs doped with various concentrations of Si and a p-type Be-doped GaAs layer grown on a GaAs substrate by the molecular beam epitaxial method, using the laser-induced nondestructive photothermal deflection technique. The thermal diffusivity value is evaluated from the slope of the graph of the phase of the photothermal deflection signal as a function of pump-probe offset. Analysis of the data shows that the cross-plane thermal diffusivity is less than that of the in-plane thermal diffusivity. It is also seen that the doping concentration has a great influence on the thermal diffusivity value. Measurement of p-type Be-doped samples shows that the nature of the dopant also influences the effective thermal diffusivity value. The results are interpreted in terms of a phonon-assisted heat transfer mechanism and the various scattering process involved in the propagation of phonons
Resumo:
In this paper, we report the in-plane and cross-plane measurements of the thermal diffusivity of double epitaxial layers of n-type GaAs doped with various concentrations of Si and a p-type Be-doped GaAs layer grown on a GaAs substrate by the molecular beam epitaxial method, using the laser-induced nondestructive photothermal deflection technique. The thermal diffusivity value is evaluated from the slope of the graph of the phase of the photothermal deflection signal as a function of pump-probe offset. Analysis of the data shows that the cross-plane thermal diffusivity is less than that of the in-plane thermal diffusivity. It is also seen that the doping concentration has a great influence on the thermal diffusivity value. Measurement of p-type Be-doped samples shows that the nature of the dopant also influences the effective thermal diffusivity value. The results are interpreted in terms of a phonon-assisted heat transfer mechanism and the various scattering process involved in the propagation of phonons
Resumo:
Laser induced transverse photothermal deflection technique has been employed to determine the thermal parameters of InP doped with Sn, S and Fe as well as intrinsic InP. The thermal diffusivity values of these various samples are evaluated from the slope of the curve plotted between the phase of photothermal deflection signal and pump-probe offset. Analysis of the data shows that heat transport and hence the thermal diffusivity value, is greatly affected by the introduction of dopant. It is also seen that the direction of heat flow with respect to the plane of cleavage of semiconductor wafers influences the thermal diffusivity value. The results are explained in terms of dominating phonon assisted heat transfer mechanism in semiconductors.
Resumo:
In the present study, radio frequency plasma polymerization technique is used to prepare thin films of polyaniline, polypyrrole, poly N-methyl pyrrole and polythiophene. The thermal characterization of these films is carried out using transverse probe beam deflection method. Electrical conductivity and band gaps are also determined. The effect of iodine doping on electrical conductivity and the rate of heat diffusion is explored.Bulk samples of poyaniline and polypyrrole in powder form are synthesized by chemical route. Open photoacoustic cell configuration is employed for the thermal characterization of these samples. The effect of acid doping on heat diffusion in these bulk samples of polyaniline is also investigated. The variation of electrical conductivity of doped polyaniline and polypyrrole with temperature is also studied for drawing conclusion on the nature of conduction in these samples. In order to improve the processability of polyaniline and polypyrrole, these polymers are incorporated into a host matrix of poly vinyl chloride. Measurements of thermal diffusivity and electrical conductivity of these samples are carried out to investigate the variation of these quantities as a function of the content of polyvinyl chloride.
Resumo:
The thesis focused Studies on Energy Exchange and Upper Ocean Thermal Structure in Arabian Sea and Heat Transport in Northern Indian Ocean. The present thesis is an attempt to understand the upper ocean thermal characteristics at selected areas in the western and eastern Arabian Sea in relation to surface energy exchange and dynamics, on a climatological basis. It is also aimed to examine, the relative importance of different processes in the evolution of SST at the western and eastern Arabian Sea. Short-term variations of energy exchange and upper ocean thermal structure are also investigated. Climatological studies of upper ocean thermal structure and surface energy exchange in the western and eastern parts of Arabian Sea bring out the similarities/differences and the causative factors for the observed features. Annual variation of zonally averaged heat advection in north Indian Ocean shows that maximum export of about 100 W/m2 occurs around 15ON during southwest monsoon season. This is due to large negative heat storage caused by intense upwelling in several parts of northern Indian Ocean. By and large, northern Indian Ocean is an area of heat export
Resumo:
Dual beam mode-matched thermal lens method has been employed to measure the heat diffusion in nanofluid of silver with various volumes of rhodamine 6G, both dispersed in water. The important observation is an indication of temperature dependent diffusivity and that the overall heat diffusion is slower in the chemically prepared Ag sol compared to that of water. The experimental results can be explained assuming that Brownian motion is the main mechanism of heat transfer under the present experimental conditions. Light induced aggregation of the nanoparticles can also result in an anomalous diffusion behavior.
Resumo:
Kinetics of mercuric chloride catalysed solvolysis of l-butyl chloride, benzyl chloride. p-methylbenzyl chloride, l-phenylethyl chloride and triethylcarbinyl chloride have been studied in aq. DMSO, aq. acetonitrile and aq. ethanol. The kinetic data fit a second order rate equation in aq. DMSO. The calculated values of the second order rate coefficients increase in the case of aq. acetonitrile and aq. ethanol. The order in catalyst in 95%(v/v) aq. DMSO is less than unity.
Resumo:
The SST convection relation over tropical ocean and its impact on the South Asian monsoon is the first part of this thesis. Understanding the complicated relation between SST and convection is important for better prediction of the variability of the Indian monsoon in subseasonal, seasonal, interannual, and longer time scales. Improved global data sets from satellite scatterometer observations of SST, precipitation and refined reanalysis of global wind fields have made it possible to do a comprehensive study of the SST convection relation. Interaction of the monsoon and Indian ocean has been discussed. A coupled feedback process between SST and the Active-Break cycle of the Asian summer monsoon is a central theme of the thesis. The relation between SST and convection is very important in the field of numerical modeling of tropical rainfall. It is well known that models generally do very well simulating rainfall in areas of tropical convergence zones but are found unable to do satisfactory simulation in the monsoon areas. Thus in this study we critically examined the different mechanisms of generation of deep convection over these two distinct regions.The study reported in chapter 3 has shown that SST - convection relation over the warm pool regions of Indian and west Pacific oceans (monsoon areas) is in such a way that convection increases with SST in the SST range 26-29 C and for SST higher than 29-30 C convection decreases with increase of SST (it is called Waliser type). It is found that convection is induced in areas with SST gradients in the warm pool areas of Indian and west Pacific oceans. Once deep convection is initiated in the south of the warmest region of warm pool, the deep tropospheric heating by the latent heat released in the convective clouds produces strong low level wind fields (Low level Jet - LLJ) on the equatorward side of the warm pool and both the convection and wind are found to grow through a positive feedback process. Thus SST through its gradient acts only as an initiator of convection. The central region of the warm pool has very small SST gradients and large values of convection are associated with the cyclonic vorticity of the LLJ in the atmospheric boundary layer. The conditionally unstable atmosphere in the tropics is favorable for the production of deep convective clouds.