1 resultado para Head Start
em Cochin University of Science
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (11)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (27)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (154)
- Boston University Digital Common (7)
- Brock University, Canada (13)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Cambridge University Engineering Department Publications Database (51)
- CentAUR: Central Archive University of Reading - UK (52)
- Center for Jewish History Digital Collections (4)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (8)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Archives@Colby (5)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Peer Publishing (6)
- DigitalCommons@The Texas Medical Center (27)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (8)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (15)
- Indian Institute of Science - Bangalore - Índia (28)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (6)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (106)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (70)
- Queensland University of Technology - ePrints Archive (126)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (8)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (85)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (5)
- South Carolina State Documents Depository (1)
- Universidad del Rosario, Colombia (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (8)
- Université de Montréal, Canada (8)
- University of Connecticut - USA (2)
- University of Michigan (14)
- University of Southampton, United Kingdom (2)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Unit Commitment Problem (UCP) in power system refers to the problem of determining the on/ off status of generating units that minimize the operating cost during a given time horizon. Since various system and generation constraints are to be satisfied while finding the optimum schedule, UCP turns to be a constrained optimization problem in power system scheduling. Numerical solutions developed are limited for small systems and heuristic methodologies find difficulty in handling stochastic cost functions associated with practical systems. This paper models Unit Commitment as a multi stage decision making task and an efficient Reinforcement Learning solution is formulated considering minimum up time /down time constraints. The correctness and efficiency of the developed solutions are verified for standard test systems