4 resultados para Harmonic suppressor

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear optics has emerged as a new area of physics , following the development of various types of lasers. A number of advancements , both theoretical and experimental . have been made in the past two decades . by scientists al1 over the world. However , onl y few scientists have attempted to study the experimental aspects of nonlinear optical phenomena i n I ndian laboratories. This thesis is the report of an attempt made in this direction. The thesis contains the details of the several investigations which the author has carried out in the past few years, on optical phase conjugation (OPC) and continuous wave CCVD second harmonic generation CSHG). OPC is a new branch of nonlinear optics, developed only in the past decade. The author has done a few experiments on low power OPC in dye molecules held in solid matrices, by making use of a degenerate four wave mixing CDFWND scheme. These samples have been characterised by studies on their absorption-spectra. fluorescence spectra. triplet lifetimes and saturation intensities. Phase conjugation efficiencies with r espect to the various parameters have been i nvesti gated . DFWM scheme was also employed i n achievi ng phase conjugation of a br oadband laser C Nd: G1ass 3 using a dye solution as the nonlinear medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact coplanar waveguide (CPW)-fed uniplanar antenna with harmonic suppression characteristics is presented. The above characteristics are achieved by properly modifying the ground plane and adjusting the signal strip of an open-ended CPW-fed transmission line. The simulated and experimental characteristics of the antenna are presented, compared, and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salient pole brushless alternators coupled to IC engines are extensively used as stand-by power supply units for meeting in- dustrial power demands. Design of such generators demands high power to weight ratio, high e ciency and low cost per KVA out- put. Moreover, the performance characteristics of such machines like voltage regulation and short circuit ratio (SCR) are critical when these machines are put into parallel operation and alterna- tors for critical applications like defence and aerospace demand very low harmonic content in the output voltage. While designing such alternators, accurate prediction of machine characteristics, including total harmonic distortion (THD) is essential to mini- mize development cost and time. Total harmonic distortion in the output voltage of alternators should be as low as possible especially when powering very sophis- ticated and critical applications. The output voltage waveform of a practical AC generator is replica of the space distribution of the ux density in the air gap and several factors such as shape of the rotor pole face, core saturation, slotting and style of coil disposition make the realization of a sinusoidal air gap ux wave impossible. These ux harmonics introduce undesirable e ects on the alternator performance like high neutral current due to triplen harmonics, voltage distortion, noise, vibration, excessive heating and also extra losses resulting in poor e ciency, which in turn necessitate de-rating of the machine especially when connected to non-linear loads. As an important control unit of brushless alternator, the excitation system and its dynamic performance has a direct impact on alternator's stability and reliability. The thesis explores design and implementation of an excitation i system utilizing third harmonic ux in the air gap of brushless al- ternators, using an additional auxiliary winding, wound for 1=3rd pole pitch, embedded into the stator slots and electrically iso- lated from the main winding. In the third harmonic excitation system, the combined e ect of two auxiliary windings, one with 2=3rd pitch and another third harmonic winding with 1=3rd pitch, are used to ensure good voltage regulation without an electronic automatic voltage regulator (AVR) and also reduces the total harmonic content in the output voltage, cost e ectively. The design of the third harmonic winding by analytic methods demands accurate calculation of third harmonic ux density in the air gap of the machine. However, precise estimation of the amplitude of third harmonic ux in the air gap of a machine by conventional design procedures is di cult due to complex geome- try of the machine and non-linear characteristics of the magnetic materials. As such, prediction of the eld parameters by conven- tional design methods is unreliable and hence virtual prototyping of the machine is done to enable accurate design of the third har- monic excitation system. In the design and development cycle of electrical machines, it is recognized that the use of analytical and experimental methods followed by expensive and in exible prototyping is time consum- ing and no longer cost e ective. Due to advancements in com- putational capabilities over recent years, nite element method (FEM) based virtual prototyping has become an attractive al- ternative to well established semi-analytical and empirical design methods as well as to the still popular trial and error approach followed by the costly and time consuming prototyping. Hence, by virtually prototyping the alternator using FEM, the important performance characteristics of the machine are predicted. Design of third harmonic excitation system is done with the help of results obtained from virtual prototype of the machine. Third harmonic excitation (THE) system is implemented in a 45 KVA ii experimental machine and experiments are conducted to validate the simulation results. Simulation and experimental results show that by utilizing third harmonic ux in the air gap of the ma- chine for excitation purposes during loaded conditions, triplen harmonic content in the output phase voltage is signi cantly re- duced. The prototype machine with third harmonic excitation system designed and developed based on FEM analysis proved to be economical due to its simplicity and has the added advan- tage of reduced harmonics in the output phase voltage.