9 resultados para HTS - Hough Transform Statistics
em Cochin University of Science
Resumo:
The study deals with the distribution theory and applications of concomitants from the Morgenstern family of bivariate distributions.The Morgenstern system of distributions include all cumulative distributions of the form FX,Y(X,Y)=FX(X) FY(Y)[1+α(1-FX(X))(1-FY(Y))], -1≤α≤1.The system provides a very general expression of a bivariate distributions from which members can be derived by substituting expressions of any desired set of marginal distributions.It is a brief description of the basic distribution theory and a quick review of the existing literature.The Morgenstern family considered in the present study provides a very general expression of a bivariate distribution from which several members can be derived by substituting expressions of any desired set of marginal distributions.Order statistics play a very important role in statistical theory and practice and accordingly a remarkably large body of literature has been devoted to its study.It helps to develop special methods of statistical inference,which are valid with respect to a broad class of distributions.The present study deals with the general distribution theory of Mk, [r: m] and Mk, [r: m] from the Morgenstern family of distributions and discuss some applications in inference, estimation of the parameter of the marginal variable Y in the Morgestern type uniform distributions.
Resumo:
A method for computer- aided diagnosis of micro calcification clusters in mammograms images presented . Micro calcification clus.eni which are an early sign of bread cancer appear as isolated bright spots in mammograms. Therefore they correspond to local maxima of the image. The local maxima of the image is lint detected and they are ranked according to it higher-order statistical test performed over the sub band domain data
Resumo:
Fourier transform methods are employed heavily in digital signal processing. Discrete Fourier Transform (DFT) is among the most commonly used digital signal transforms. The exponential kernel of the DFT has the properties of symmetry and periodicity. Fast Fourier Transform (FFT) methods for fast DFT computation exploit these kernel properties in different ways. In this thesis, an approach of grouping data on the basis of the corresponding phase of the exponential kernel of the DFT is exploited to introduce a new digital signal transform, named the M-dimensional Real Transform (MRT), for l-D and 2-D signals. The new transform is developed using number theoretic principles as regards its specific features. A few properties of the transform are explored, and an inverse transform presented. A fundamental assumption is that the size of the input signal be even. The transform computation involves only real additions. The MRT is an integer-to-integer transform. There are two kinds of redundancy, complete redundancy & derived redundancy, in MRT. Redundancy is analyzed and removed to arrive at a more compact version called the Unique MRT (UMRT). l-D UMRT is a non-expansive transform for all signal sizes, while the 2-D UMRT is non-expansive for signal sizes that are powers of 2. The 2-D UMRT is applied in image processing applications like image compression and orientation analysis. The MRT & UMRT, being general transforms, will find potential applications in various fields of signal and image processing.
Resumo:
The application vistas of superconductors have widened very much since the discovery of high TC superconductors (HTS) as many of the applications can be realised at 77 K rather than going down to 4.2 K, the liquid He temperature. One such application is the HTS current lead which is used to connect a superconducting system with a room temperature power source. Minimising heat leak to the cryogenic environment is the main advantage of introducing current leads into superconducting systems. The properties of HTSS likes zero resistance (avoiding joule heating) and very low thermal conductivity (minimized conductive heat transfer) make them ideal candidates to be used as current leads. There are two forms of HTS current leads. (i) bulk form (tube or rod) prepared either from YBCO or BSCCO and (ii) tape form prepared from Bi-2223 multifilamentary tapes. The tape form of current leads has many advantages with respect to the mechanical and thermal stability related criteria. Crucial information on various aspects of HTS current lead development are not available in the literature as those are kept proprietary by various companies around the world. The present work has been undertaken to tailor the properties of multifilamentary tapes for the current lead application and to optimise the processing parameters of the same for enhanced critical current density and field tolerance. Also it is the aim of the present investigation is to prepare prototype current leads engineered for operation in conduction cooled mode and test them for operational stability
Resumo:
This paper presents the application of wavelet processing in the domain of handwritten character recognition. To attain high recognition rate, robust feature extractors and powerful classifiers that are invariant to degree of variability of human writing are needed. The proposed scheme consists of two stages: a feature extraction stage, which is based on Haar wavelet transform and a classification stage that uses support vector machine classifier. Experimental results show that the proposed method is effective
Resumo:
Partial moments are extensively used in actuarial science for the analysis of risks. Since the first order partial moments provide the expected loss in a stop-loss treaty with infinite cover as a function of priority, it is referred as the stop-loss transform. In the present work, we discuss distributional and geometric properties of the first and second order partial moments defined in terms of quantile function. Relationships of the scaled stop-loss transform curve with the Lorenz, Gini, Bonferroni and Leinkuhler curves are developed
Resumo:
This paper compares the most common digital signal processing methods of exon prediction in eukaryotes, and also proposes a technique for noise suppression in exon prediction. The specimen used here which has relevance in medical research, has been taken from the public genomic database - GenBank.Here exon prediction has been done using the digital signal processing methods viz. binary method, EIIP (electron-ion interaction psuedopotential) method and filter methods. Under filter method two filter designs, and two approaches using these two designs have been tried. The discrete wavelet transform has been used for de-noising of the exon plots.Results of exon prediction based on the methods mentioned above, which give values closest to the ones found in the NCBI database are given here. The exon plot de-noised using discrete wavelet transform is also given.Alterations to the proven methods as done by the authors, improves performance of exon prediction algorithms. Also it has been proven that the discrete wavelet transform is an effective tool for de-noising which can be used with exon prediction algorithms
Resumo:
The problem of using information available from one variable X to make inferenceabout another Y is classical in many physical and social sciences. In statistics this isoften done via regression analysis where mean response is used to model the data. Onestipulates the model Y = µ(X) +ɛ. Here µ(X) is the mean response at the predictor variable value X = x, and ɛ = Y - µ(X) is the error. In classical regression analysis, both (X; Y ) are observable and one then proceeds to make inference about the mean response function µ(X). In practice there are numerous examples where X is not available, but a variable Z is observed which provides an estimate of X. As an example, consider the herbicidestudy of Rudemo, et al. [3] in which a nominal measured amount Z of herbicide was applied to a plant but the actual amount absorbed by the plant X is unobservable. As another example, from Wang [5], an epidemiologist studies the severity of a lung disease, Y , among the residents in a city in relation to the amount of certain air pollutants. The amount of the air pollutants Z can be measured at certain observation stations in the city, but the actual exposure of the residents to the pollutants, X, is unobservable and may vary randomly from the Z-values. In both cases X = Z+error: This is the so called Berkson measurement error model.In more classical measurement error model one observes an unbiased estimator W of X and stipulates the relation W = X + error: An example of this model occurs when assessing effect of nutrition X on a disease. Measuring nutrition intake precisely within 24 hours is almost impossible. There are many similar examples in agricultural or medical studies, see e.g., Carroll, Ruppert and Stefanski [1] and Fuller [2], , among others. In this talk we shall address the question of fitting a parametric model to the re-gression function µ(X) in the Berkson measurement error model: Y = µ(X) + ɛ; X = Z + η; where η and ɛ are random errors with E(ɛ) = 0, X and η are d-dimensional, and Z is the observable d-dimensional r.v.