3 resultados para HOVERING GUARDS
em Cochin University of Science
Resumo:
In this thesis we have studied a few models involving self-generation of priorities. Priority queues have been extensively discussed in literature. However, these are situations involving priority assigned to (or possessed by) customers at the time of their arrival. Nevertheless, customers generating into priority is a common phenomena. Such situations especially arise at a physicians clinic, aircrafts hovering over airport running out of fuel but waiting for clearance to land and in several communication systems. Quantification of these are very little seen in literature except for those cited in some of the work indicated in the introduction. Our attempt is to quantify a few of such problems. In doing so, we have also generalized the classical priority queues by introducing priority generation ( going to higher priorities and during waiting). Systematically we have proceeded from single server queue to multi server queue. We also introduced customers with repeated attempts (retrial) generating priorities. All models that were analyzed in this thesis involve nonpreemptive service. Since the models are not analytically tractable, a large number of numerical illustrations were produced in each chapter to get a feel about the working of the systems.
Resumo:
Modern computer systems are plagued with stability and security problems: applications lose data, web servers are hacked, and systems crash under heavy load. Many of these problems or anomalies arise from rare program behavior caused by attacks or errors. A substantial percentage of the web-based attacks are due to buffer overflows. Many methods have been devised to detect and prevent anomalous situations that arise from buffer overflows. The current state-of-art of anomaly detection systems is relatively primitive and mainly depend on static code checking to take care of buffer overflow attacks. For protection, Stack Guards and I-leap Guards are also used in wide varieties.This dissertation proposes an anomaly detection system, based on frequencies of system calls in the system call trace. System call traces represented as frequency sequences are profiled using sequence sets. A sequence set is identified by the starting sequence and frequencies of specific system calls. The deviations of the current input sequence from the corresponding normal profile in the frequency pattern of system calls is computed and expressed as an anomaly score. A simple Bayesian model is used for an accurate detection.Experimental results are reported which show that frequency of system calls represented using sequence sets, captures the normal behavior of programs under normal conditions of usage. This captured behavior allows the system to detect anomalies with a low rate of false positives. Data are presented which show that Bayesian Network on frequency variations responds effectively to induced buffer overflows. It can also help administrators to detect deviations in program flow introduced due to errors.
Resumo:
The present study describes in detail the major technological advances in the rubber-growing industry in the lastfour decades. The major technological changes experienced in the rubber plantation industry during the period are the introduction of 'high yielding-planting materials, scientific application of fertilisers, use of pesticides, tapping during rainy season using‘rain guards, use of. yield stimulants and improved tapping methods School of Management Studies, Cochin University of Science and Technology