2 resultados para HEAT CURRENT
em Cochin University of Science
Resumo:
The thesis focused Studies on Energy Exchange and Upper Ocean Thermal Structure in Arabian Sea and Heat Transport in Northern Indian Ocean. The present thesis is an attempt to understand the upper ocean thermal characteristics at selected areas in the western and eastern Arabian Sea in relation to surface energy exchange and dynamics, on a climatological basis. It is also aimed to examine, the relative importance of different processes in the evolution of SST at the western and eastern Arabian Sea. Short-term variations of energy exchange and upper ocean thermal structure are also investigated. Climatological studies of upper ocean thermal structure and surface energy exchange in the western and eastern parts of Arabian Sea bring out the similarities/differences and the causative factors for the observed features. Annual variation of zonally averaged heat advection in north Indian Ocean shows that maximum export of about 100 W/m2 occurs around 15ON during southwest monsoon season. This is due to large negative heat storage caused by intense upwelling in several parts of northern Indian Ocean. By and large, northern Indian Ocean is an area of heat export
Resumo:
The application vistas of superconductors have widened very much since the discovery of high TC superconductors (HTS) as many of the applications can be realised at 77 K rather than going down to 4.2 K, the liquid He temperature. One such application is the HTS current lead which is used to connect a superconducting system with a room temperature power source. Minimising heat leak to the cryogenic environment is the main advantage of introducing current leads into superconducting systems. The properties of HTSS likes zero resistance (avoiding joule heating) and very low thermal conductivity (minimized conductive heat transfer) make them ideal candidates to be used as current leads. There are two forms of HTS current leads. (i) bulk form (tube or rod) prepared either from YBCO or BSCCO and (ii) tape form prepared from Bi-2223 multifilamentary tapes. The tape form of current leads has many advantages with respect to the mechanical and thermal stability related criteria. Crucial information on various aspects of HTS current lead development are not available in the literature as those are kept proprietary by various companies around the world. The present work has been undertaken to tailor the properties of multifilamentary tapes for the current lead application and to optimise the processing parameters of the same for enhanced critical current density and field tolerance. Also it is the aim of the present investigation is to prepare prototype current leads engineered for operation in conduction cooled mode and test them for operational stability