14 resultados para Groundwater Nitrate isotopes Nitrification Denitrification
em Cochin University of Science
Resumo:
Hydrographic characteristics of the southwest coast of India and its adjoining Cochin backwaters (CBW) were studied during the summer monsoon period. Anomalous formation of anoxia and denitrification were observed in the bottom layers of CBW, which 5 have not been previously reported elsewhere in any tropical estuarine systems. The prevalent upwelling in the Arabian Sea (AS) brought cool, high saline, oxygen deficient and nutrient-rich waters towards the coastal zone and bottom layers of CBW during the high tide. High freshwater discharge in the surface layers brought high amount of nutrients and makes the CBW system highly productive. Intrusion of AS waters seems 10 to be stronger towards the upstream end ( 15 km), than had been previously reported, as a consequence of the lowering of river discharges and deepening of channels in the estuary. Time series measurements in the lower reaches of CBW indicated a low mixing zone with increased stratification, 3 h after the high tide (highest high tide) and high variation in vertical mixing during the spring and neap phases. The upwelled waters 15 (O2 40 μM) intruded into the estuary was found to lose more oxygen during the neap phase (suboxic O2 4 μM) than spring phase (hypoxic O2 10 μM). Increased stratification coupled with low ventilation and presence of high organic matter have resulted in an anoxic condition (O2 = 0), 2–6 km away from barmouth of the estuary and leads to the formation of hydrogen sulphide. The reduction of nitrate and formation of nitrite 20 within the oxygen deficient waters indicated strong denitrification intensity in the estuary. The expansion of oxygen deficient zone, denitrification and formation of hydrogen sulphide may lead to a destruction of biodiversity and an increase of green house gas emissions from this region
Resumo:
The present work aims at deciphering the processes that control the nutrient distribution along the EEZ (Exclusive Economic Zone of India) of the west coast of India and to bring out its linkage with primary and secondary productivity. This work assume utmost importance as very few studies have hitherto focused entirely on the EEZ of the west coast of India to address the biochemical responses brought about by monsoons. The present study examines the seasonal variations in physicochemical parameters and associated primary biological responses along the west coast of India. This study targets to measure and understand the shelf ocean exchange in a typical coastal upwelling region of the southeast Arabian Sea, and the influence of convective mixing along the northern part of the west coast of India. The study focuses more directly on coastal upwelling along the southwest coast of India, within the EEZ. The effects of coastal upwelling, eddy formation and the offshore advection are apparent in the present investigation. This has consequences to fisheries and climate, in energy transfer to the food chain and the increased sequestering of carbon in the ocean. The study also focuses on the Oxygen Minimum Zone (OMZ) and dentrification observed along the EEZ of the west coast of India on a seasonal scale. In the study, an attempt is also made to demarcate the geographical boundaries of the denitrification zone in the EEZ of India and on the nature and magnitude of these variations, on a seasonal and inter annual scales
Resumo:
The metal complex, [Ni(en)2(H2O)2](NO3)2 (en = ethylenediamine), was decomposed in a static furnace at 200 C by autogenous decomposition to obtain phase pure metallic nickel nanocrystallites. The nickel metal thus obtained was studied by XRD, IR spectra, SEM and CHN analysis. The nickel crystallites are in the nanometer range as indicated by XRD studies. The IR spectral studies and CHN analyses show that the surface is covered with a nitrogen containing species. Thermogravimetric mass gain shows that the product purity is high (93%). The formed nickel is stable and resistant to oxidation up to 350 C probably due to the coverage of nitrogen containing species. Activation energy for the oxidation of the prepared nickel nanocrystallites was determined by non-isothermal methods and was found to depend on the conversion ratio. The oxidation kinetics of the nickel crystallites obeyed a Johnson–Mehl–Avrami mechanism probably due to the special morphology and crystallite strain present on the metal.
Resumo:
Nitrification is the biological oxidation of ammonium, first to nitrite and then to nitrate by two groups of aerobic, chemolithotrophic bacteria belonging to the family Nitrobacteriaceae. The biological nitrification in municipal wastewater treatment is important in those cases were ammonia removal requirement specially exist. In a trickling filter or in an activated sludge system nitrification is rate limiting and thus necessitates longer detention time. The combined carbon oxidation-nitrification processes generally have low population of nitrifiers due to a high ratio of BOD to total nitrogen in the effluent. This necessitates, separate carbon and nitrogen oxidation processes, which thus minimizes wash out ofthe nitrifiers. Therefore, a separate stage nitrification has become essential to achieve faster and efficient removal of ammonia from the wastewater. The present work deals with the development of bio reactor for nitrifying of sewage as the tertiary process so that the treated wastewater can be used for irrigation, algal culture or fish culture
Resumo:
People in several parts of the world as well in India countenance an immense confront to meet the basic needs of water. The crisis is not due to lack of fresh water but its availability in adequate superiority. Environmental quality objectives should be developed in order to define acceptable loads on the terrain. There has been a number of initiatives in water quality monitoring but the next step towards improving its quality hasn’t taken the required pace. Today, there is a growing need to create awareness among citizens on the different technologies available for improving the water quality. Monitoring facilitate to apprehend how land and water use distress the quality of water and assist in estimating the extent of pollution. Once these issues are recognized, people can work towards local solutions to manage the indispensable resource effectively. Ground waters are extremely precious resources and in many countries together with India they represent the most important drinking water supply. They are generally microbiologically pure and, in most cases, they do not need any treatment. This communiqué is intended to act as a channel on the various paraphernalia and techniques accessible for groundwater quality assessment and suggesting the assured precautionary measures to embark on environment management. This learning is imperative considering that groundwater as the exclusive source of drinking water in the region which not makes situation alarming but also calls for immediate attention. The scope of this work is somewhat vast. Water quality in Ernakulam district is getting deteriorated due to the fast growth of urbanization. The closure of several water bodies due to land development and construction prevents infiltration of rainwater into the ground and hence recharge the aquifers. Most of the aquifers are getting polluted from the industrial effluents and chemicals and fertilizers used in agriculture. Such serious issues require proper monitoring of groundwater and steps are to be taken for remedial measures. This study helps in the total protection of the rich resource of groundwater and its sustainability. Socio-economic aspect covered could be used for conducting further individual case studies and to suggest remedial measures on a scientific basis. The specific study taken up for 15 sites can be further extended to the sources of pollution, especially industrial and agriculture
Resumo:
Everywhere, on the coastal belt it is proved without doubt that the pristine ground water quality was severely deteriorated after the 26 December 2004 Indian Ocean Tsunami. But how far is more relevant, as it is decided by the so-called pre-tsunamic situation of the region. In water quality studies it is this reference finger print which earmarks regional ground water chemistry based on which the monthly variability could rationally be interpreted. This Ph D thesis comprises the testing and evaluation of the facts: whether there is any significant difference in the water quality parameters under study between stations and between months in Tsunami Affected Dug Wells (TADW). Whether the selected water quality parameters vary significantly from BIS and WHO standards. Whether the water quality index (WQI) differ significantly between Tsunami Affected Dug Wells (TADW) and Bore Wells (BW). Whether there is any significant difference in the water quality parameters during December 2005 and December 2008. Is there any significant change in the Water Quality Parameters before 2001 and after tsunami (2005) in TADW.
Resumo:
Shrimp grow out systems under zero water exchange mode demand constant remediation of total ammonia nitrogen (TAN) andNO2 −–Nto protect the crop. To address this issue, aninexpensive and user-friendly technology using immobilized nitrifying bacterial consortia (NBC) as bioaugmentors has been developed and proposed for adoption in shrimp culture systems. Indigenous NBC stored at 4 °C were activated at room temperature (28 °C) and cultured in a 2 L bench top fermentor. The consortia, after enumeration by epifluorescence microscopy,were immobilized on delignifiedwood particles of a soft wood tree Ailantus altissima (300–1500 μm) having a surface area of 1.87m2 g−1. Selection of wood particle as substratumwas based on adsorption of NBC on to the particles, biofilm formation, and their subsequent nitrification potential. The immobilization could be achievedwithin 72 h with an initial cell density of 1×105 cells mL−1. On experimenting with the lowest dosage of 0.2 g (wet weight) immobilized NBC in 20 L seawater, a TAN removal rate of 2.4 mg L−1 within three days was observed. An NBC immobilization device could be developed for on site generation of the bioaugmentor preparation as per requirement. The product of immobilization never exhibited lag phase when transferred to fresh medium. The extent of nitrification in a simulated systemwas two times the rate observed in the control systems suggesting the efficacy in real life situations. The products of nitrification in all experiments were undetectable due to denitrifying potency, whichmade the NBC an ideal option for biological nitrogen removal. The immobilized NBC thus generated has been named TANOX (Total Ammonia Nitrogen Oxidizer)
Resumo:
A packed bed bioreactor (PBBR) was developed for rapid establishment of nitrification in brackish water hatchery systems in the tropics. The reactors were activated by immobilizing ammonia-oxidizing (AMONPCU- 1) and nitrite-oxidizing (NIONPCU-1) bacterial consortia on polystyrene and low-density polyethylene beads, respectively. Fluorescence in situ hybridization demonstrated the presence of autotrophic nitrifiers belong to Nitrosococcus mobilis, lineage of b ammonia oxidizers and nitrite oxidizer Nitrobacter sp. in the consortia. The activated reactors upon integration to the hatchery system resulted in significant ammonia removal (P\0.01) culminating to its undetectable levels. Consequently, a significantly higher percent survival of larvae was observed in the larval production systems. With spent water the reactors could establish nitrification with high percentage removal of ammonia (78%), nitrite (79%) and BOD (56%) within 7 days of initiation of the process. PBBR is configured in such a way to minimize the energy requirements for continuous operation by limiting the energy inputs to a single stage pumping of water and aeration to the aeration cells. The PBBR shall enable hatchery systems to operate under closed recirculating mode and pave the way for better water management in the aquaculture industry.
Resumo:
Two distinct nitrifying bacterial consortia, namely an ammonia oxidizing non-penaeid culture (AMO NPCU-1) and an ammonia oxidizing penaeid culture (AMOPCU-1), have been mass produced in a nitrifying bacterial consortia production unit (NBCPU). The consortia, maintained at 4 C were activated and cultured in a 2 l fermentor initially. At this stage the net biomass (0.105 and 0.112 g/l), maximum specific growth rate (0.112 and 0.105/h) and yield coefficients (1.315 and 2.08) were calculated respectively, for AMONPCU-1 and AMOPCU-1 on attaining stationary growth phase. Subsequently on mass production in a 200 l NBCPU under optimized culture conditions, the total amounts of NH4 ?–N removed by AMONPCU-1 and AMOPCU-1 were 1.948 and 1.242 g/l within 160 and 270 days, respectively. Total alkalinity reduction of 11.7–14.4 and 7.5–9.1 g/l were observed which led to the consumption of 78 and 62 g Na2CO3. The yield coefficient and biomass of AMONPCU-1 were 0.67 and 125.3 g/l and those of AMOPCU-1 were 1.23 and 165 g/l. The higher yield coefficient and growth rate of AMOPCU-1 suggest better energy conversion efficiency and higher CO2 fixation potential. Both of the consortia were dominated by Nitrosomonas-like organisms. The consortia may find application in the establishment of nitrification within marine and brackish water culture systems.
Resumo:
BACKGROUND: A packed bed bioreactor (PBBR) activated with an indigenous nitrifying bacterial consortia was developed and commercialized for rapid establishment of nitrification in brackish water and marine hatchery systems in the tropics. The present study evaluated nitrification in PBBR integrated into a Penaeus monodon recirculating maturation system under different substrate concentrations and flow rates. RESULTS:Instantnitrificationwasobservedafter integration ofPBBRinto thematuration system.TANandNO2-Nconcentrations were always maintained below0.5 mg L−1 during operation. The TANandNO2-N removalwas significant (P < 0.001) in all the six reactor compartments of the PBBR having the substrates at initial concentrations of 2, 5 and 10 mg L−1. The average volumetric TAN removal rates increased with flow rates from 43.51 (250 L h−1) to 130.44 (2500 L h−1) gTAN m−3 day−1 (P < 0.05). FISH analysis of the biofilms after 70 days of operation gave positive results with probes NSO 190 ((β ammonia oxidizers), NsV 443 (Nitrosospira spp.) NEU (halophilic Nitrosomonas), Ntspa 712 (Phylum Nitrospira) indicating stability of the consortia. CONCLUSION: The PBBR integrated into the P. monodon maturation system exhibited significant nitrification upon operation for 70 days as well as at different substrate concentrations and flow rates. This system can easily be integrated into marine and brackish water aquaculture systems, to establish instantaneous nitrification
Resumo:
For establishing nitrification in prawn (non-penaeid, salinity 10–15 ppt) and shrimp (penaeid, salinity 30–35 ppt) larval production systems, a stringed bed suspended bioreactor (SBSBR) was designed, fabricated, and validated. It was fabricated with 5 mm polystyrene and low density polyethylene beads as the substrata for ammonia and nitrite oxidizing bacterial consortia, respectively, with an overall surface area of 684 cm2. The reactors were activated in a prototype activator and were transported in polythene bags to the site of testing. Performance of the reactors activated with the nitrifying bacterial consortia AMONPCU-1 (ammonia oxidizers for non-penaeid culture) and NIONPCU-1 (nitrite oxidizers for non-penaeid culture) was evaluated in a Macrobrachium rosenbergii larval rearing system and those activated with AMOPCU-1 (ammonia oxidizers for penaeid culture) and NIOPCU-1 (nitrite oxidizers for penaeid culture) in a Penaeus monodon seed production system. Rapid setting up of nitrification could be observed in both the static systems which resulted in a higher relative per cent survival of larvae
Resumo:
Leachate from an untreated landfill or landfill with damaged liners will cause the pollution of soil and ground water. Here an attempt was made to generate knowledge on concentrations of all relevant pollutants in soil due to municipal solid waste landfill leachate and its migration through soil and also to study the effect of leachate on the engineering properties of soil. To identify the pollutants in soil due to the leachate generated from municipal solid waste landfill site, a case study on an unlined municipal solid waste landfill at Kalamassery has been done. Soil samples as well as water samples were collected from the site and analysed to identify the pollutants and its effect on soil characteristics. The major chemicals in the soil were identified as Ammonia, Chloride, Nitrate, Iron, Nickel, Chromium, Cadmium etc.. Engineering properties of field soil samples show that the chemicals from the leachate of landfill may have effect on the engineering properties of soil. Laboratory experiments were formulated to model the field around an unlined MSW landfill using two different soils subjected to a synthetic leachate. The Maximum change in chemical concentration and engineering property was observed on soil samples at a radial distance of 0.2 m and at a depth of 0.3 m. The pollutant (chemicals) transport pattern through the soil was also studied using synthetic leachate. To establish the effect of pollutants (chemicals) on engineering properties of soil, experiments were conducted on two types soils treated with the synthetic chemicals at four different concentrations. Analyses were conducted after maturing periods of 7, 50, 100 and 150 days. Test soils treated with maximum chemical concentration and matured for 150 days were showing major change in the properties. To visualize the flow of pollutants through soil in a broader sense, the transportation of pollutants through soil was modeled using software ‘Visual MODFLOW’. The actual field data collected for the case study was used to calibrate the modelling and thus simulated the flow pattern of the pollutants through soil around Kalamassery municipal solid waste landfill for an extent of 4 km2. Flow was analysed for a time span of 30 years in which the landfill was closed after 20 years. The concentration of leachate beneath the landfill was observed to be reduced considerably within one year after closure of landfill and within 8 years, it gets lowered to a negligible level. As an environmensstal management measure to control the pollution through leachate, permeable reactive barriers are used as an emerging technology. Here the suitability of locally available materials like coir pith, rice husk and sugar cane bagasse were investigated as reactive media in permeable reactive barrier. The test results illustrates that, among these, coir pith was showing better performance with maximum percentage reduction in concentration of the filtrate. All these three agricultural wastes can be effectively utilized as a reactive material. This research establishes the influence of leachate of municipal solid waste landfill on the engineering properties of soil. The factors such as type of the soil, composition of leachate, infiltration rate, aquifers, ground water table etc., will have a major role on the area of influence zone of the pollutants in a landfill. Software models of the landfill area can be used to predict the extent and the time span of pollution of a landfill, by inputting the accurate field parameters and leachate characteristics. The present study throws light on the role of agro waste materials on the reduction of the pollution in leachate and thus prevents the groundwater and soil from contamination
Resumo:
This thesis entitled “Studies on Nitrifying Microorganisms in Cochin Estuary and Adjacent Coastal Waters” reports for the first time the spatial andtemporal variations in the abundance and activity of nitrifiers (Ammonia oxidizingbacteria-AOB; Nitrite oxidizing bacteria- NOB and Ammonia oxidizing archaea-AOA) from the Cochin Estuary (CE), a monsoon driven, nutrient rich tropicalestuary along the southwest coast of India. To fulfil the above objectives, field observations were carried out for aperiod of one year (2011) in the CE. Surface (1 m below surface) and near-bottomwater samples were collected from four locations (stations 1 to 3 in estuary and 4 in coastal region), covering pre-monsoon, monsoon and post-monsoon seasons. Station 1 is a low saline station (salinity range 0-10) with high freshwater influx While stations 2 and 3 are intermediately saline stations (salinity ranges 10-25). Station 4 is located ~20 km away from station 3 with least influence of fresh water and is considered as high saline (salinity range 25- 35) station. Ambient physicochemical parameters like temperature, pH, salinity, dissolved oxygen (DO), Ammonium, nitrite, nitrate, phosphate and silicate of surface and bottom waters were measured using standard techniques. Abundance of Eubacteria, total Archaea and ammonia and nitrite oxidizing bacteria (AOB and NOB) were quantified using Fluorescent in situ Hybridization (FISH) with oligonucleotide probes labeled withCy3. Community structure of AOB and AOA was studied using PCR Denaturing Gradient Gel Electrophoresis (DGGE) technique. PCR products were cloned and sequenced to determine approximate phylogenetic affiliations. Nitrification rate in the water samples were analyzed using chemical NaClO3 (inhibitor of nitrite oxidation), and ATU (inhibitor of ammonium oxidation). Contribution of AOA and AOB in ammonia oxidation process was measured based on the recovered ammonia oxidation rate. The contribution of AOB and AOA were analyzed after inhibiting the activities of AOB and AOA separately using specific protein inhibitors. To understand the factors influencing or controlling nitrification, various statistical tools were used viz. Karl Pearson’s correlation (to find out the relationship between environmental parameters, bacterial abundance and activity), three-way ANOVA (to find out the significant variation between observations), Canonical Discriminant Analysis (CDA) (for the discrimination of stations based on observations), Multivariate statistics, Principal components analysis (PCA) and Step up multiple regression model (SMRM) (First order interaction effects were applied to determine the significantly contributing biological and environmental parameters to the numerical abundance of nitrifiers). In the CE, nitrification is modulated by the complex interplay between different nitrifiers and environmental variables which in turn is dictated by various hydrodynamic characteristics like fresh water discharge and seawater influx brought in by river water discharge and flushing. AOB in the CE are more adapted to varying environmental conditions compared to AOA though the diversity of AOA is higher than AOB. The abundance and seasonality of AOB and NOB is influenced by the concentration of ammonia in the water column. AOB are the major players in modulating ammonia oxidation process in the water column of CE. The distribution pattern and seasonality of AOB and NOB in the CE suggest that these organisms coexist, and are responsible for modulating the entire nitrification process in the estuary. This process is fuelled by the cross feeding among different nitrifiers, which in turn is dictated by nutrient levels especially ammonia. Though nitrification modulates the increasing anthropogenic ammonia concentration the anthropogenic inputs have to be controlled to prevent eutrophication and associated environmental changes.