3 resultados para Greenhouse effect, Atmospheric

em Cochin University of Science


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ozone present in the atmosphere not only absorbs the biologically harmful ultraviolet radiation but also is an important ingredient of the climate system. The radiative absorption properties of ozone make it a determining factor in the structure of the atmosphere. Ozone in the troposphere has many negative impacts on humans and other living beings. Another significant aspect is the absorption of outgoing infrared radiation by ozone thus acting as a greenhouse gas. The variability of ozone in the atmosphere involves many interconnections with the incoming and outgoing radiation, temperature circulation etc. Hence ozone forms an important part of chemistry-climate as well as radiative transfer models. This aspect also makes the quantification of ozone more important. The discovery of Antarctic ozone hole and the role of anthropogenic activities in causing it made it possible to plan and implement necessary preventive measures. Continuous monitoring of ozone is also necessary to identify the effect of these preventive steps. The reactions involving the formation and destruction of ozone are influenced significantly by the temperature fluctuations of the atmosphere. On the other hand the variations in ozone can change the temperature structure of the atmosphere. Indian subcontinent is a region having large weather and climate variability which is evident from the large interannual variability of monsoon system over the region. Nearly half of Indian region comprises the tropical region. Most of ozone is formed in the tropical region and transported to higher latitudes. The formation and transport of ozone can be influenced by changes in solar radiation and various atmospheric circulation features. Besides industrial activities and vehicular traffic is more due to its large population. This may give rise to an increase in the production of tropospheric ozone which is greenhouse gas. Hence it becomes necessary to monitor the atmospheric ozone over this region. This study probes into the spatial distribution and temporal evolution of ozone over Indian subcontinent and discusses the contributing atmospheric parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ozone present in the atmosphere not only absorbs the biologically harmful ultraviolet radiation but also is an important ingredient of the climate system. The radiative absorption properties of ozone make it a determining factor in the structure of the atmosphere. Ozone in the troposphere has many negative impacts on humans and other living beings. Another significant aspect is the absorption of outgoing infrared radiation by ozone thus acting as a greenhouse gas. The variability of ozone in the atmosphere involves many interconnections with the incoming and outgoing radiation, temperature circulation etc. Hence ozone forms an important part of chemistry-climate as well as radiative transfer models. This aspect also makes the quantification of ozone more important. The discovery of Antarctic ozone hole and the role of anthropogenic activities in causing it made it possible to plan and implement necessary preventive measures. Continuous monitoring of ozone is also necessary to identify the effect of these preventive steps. The reactions involving the formation and destruction of ozone are influenced significantly by the temperature fluctuations of the atmosphere. On the other hand the variations in ozone can change the temperature structure of the atmosphere. Indian subcontinent is a region having large weather and climate variability which is evident from the large interannual variability of monsoon system over the region. Nearly half of Indian region comprises the tropical region. Most of ozone is formed in the tropical region and transported to higher latitudes. The formation and transport of ozone can be influenced by changes in solar radiation and various atmospheric circulation features. Besides industrial activities and vehicular traffic is more due to its large population. This may give rise to an increase in the production of tropospheric ozone which is greenhouse gas. Hence it becomes necessary to monitor the atmospheric ozone over this region. This study probes into the spatial distribution and temporal evolution of ozone over Indian subcontinent and discusses the contributing atmospheric parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aerosols in the atmosphere play major role in the radiation balance of the Earthatmosphere system. Direct and indirect impact of aerosols on the weather and climate still remains as a topic to be investigated in detail. The effect of aerosols on the radiation budget and thereby circulation pattern is important and requires further study. A detailed analysis of the aerosol properties, their variability and meteorological processes that affect the aerosol properties and distribution over the Indian region is performed in the thesis. The doctoral thesis entitled “Characteristics of aerosols over the Indian region and their variability associated with atmospheric conditions” contains 7 chapters. This thesis presents results on the analysis on the distribution (spatial and temporal) and characteristics of the aerosols over the Indian region and adjoining seas. Regional and stationwise data were analysed and methods such as modeling and statistical analysis are implemented to understand the aerosol properties, classification and transportation. Chapter-1 presents a brief introduction on the aerosols, their measurement techniques, impact of aerosols on the atmospheric radiation budget, climatic and geographic features of the study area and the literature review on the previous studies. It provides a basic understanding in the field of study and objective of the thesis. Definition of the aerosols, their sources/sinks and classification of the particles according to optical and microphysical properties are described. Different measurement techniques such as sampling and remote sensing methods are explained in detail. Physical parameters used to describe aerosol properties and effect of aerosols on the radiation distribution are also discussed. The chapter also explains the objectives of the thesis and description of climatic features of the study area.