2 resultados para Great lakes.
em Cochin University of Science
Resumo:
The Andaman-Nicobar Islands in the Bay of Bengal lies in a zone where the Indian plate subducts beneath the Burmese microplate, and therefore forms a belt of frequent earthquakes. Few efforts, not withstanding the available historical and instrumental data were not effectively used before the Mw 9.3 Sumatra-Andaman earthquake to draw any inference on the spatial and temporal distribution of large subduction zone earthquakes in this region. An attempt to constrain the active crustal deformation of the Andaman-Nicobar arc in the background of the December 26, 2004 Great Sumatra-Andaman megathrust earthquake is made here, thereby presenting a unique data set representing the pre-seismic convergence and co-seismic displacement.Understanding the mechanisms of the subduction zone earthquakes is both challenging sCientifically and important for assessing the related earthquake hazards. In many subduction zones, thrust earthquakes may have characteristic patterns in space and time. However, the mechanism of mega events still remains largely unresolved.Large subduction zone earthquakes are usually associated with high amplitude co-seismic deformation above the plate boundary megathrust and the elastic relaxation of the fore-arc. These are expressed as vertical changes in land level with the up-dip part of the rupture surface uplifted and the areas above the down-dip edge subsided. One of the most characteristic pattern associated with the inter-seismic era is that the deformation is in an opposite sense that of co-seismic period.This work was started in 2002 to understand the tectonic deformation along the Andaman-Nicobar arc using seismological, geological and geodetic data. The occurrence of the 2004 megathrust earthquake gave a new dimension to this study, by providing an opportunity to examine the co-seismic deformation associated with the greatest earthquake to have occurred since the advent of Global Positioning System (GPS) and broadband seismometry. The major objectives of this study are to assess the pre-seismic stress regimes, to determine the pre-seismic convergence rate, to analyze and interpret the pattern of co-seismic displacement and slip on various segments and to look out for any possible recurrence interval for megathrust event occurrence for Andaman-Nicobar subduction zone. This thesis is arranged in six chapters with further subdivisions dealing all the above aspects.
Resumo:
Distribution and chemistry of major inorganic forms of nutrients along with physico-chemical parameters were investigated. Surface sediments and overlying waters of the Ashtamudi and Vembanad Lakes were taken for the study, which is situated in the southwest coast of India. High concentrations of dissolved nitrogen and phosphorus compounds carried by the river leads to oxygen depletion in the water column. A concurrent increase in the bottom waters along with decrease in dissolved oxygen was noticed. This support to nitrification process operating in the sediment-water interface of the Ashtamudi and Vembanad Lake. Estuarine sediments are clayey sand to silty sand both in Ashtamudi and Vembanad in January and May. Present study indicates that the sediment texture is the major controlling factor in the distribution of these nutrient forms. For water samples nitrite, inorganic phosphate was high in Vembanad in January and May compared to Ashtamudi. For sediments, enhanced level of inorganic phosphate and nitrite was found in Vembanad during January and May. It had been observed that the level of N and P is more in sediments. A comparative assessment of the Ashtamudi and Vembanad Lake reveals that the Vembanad wetland is more deteriorated compared to the Ashtamudi wetland system