15 resultados para Gravity waves.
em Cochin University of Science
Tropical Mesoscale Convective Systems and Associated Energetics : Observational and Modeling Studies
Resumo:
The main purpose of the thesis is to improve the state of knowledge and understanding of the physical structure of the TMCS and its short range prediction. The present study principally addresses the fine structure, dynamics and microphysics of severe convective storms.The structure and dynamics of the Tropical cloud clusters over Indian region is not well understood. The observational cases discussed in the thesis are limited to the temperature and humidity observations. We propose a mesoscale observational network along with all the available Doppler radars and other conventional and non—conventional observations. Simultaneous observations with DWR, VHF and UHF radars of the same cloud system will provide new insight into the dynamics and microphysics of the clouds. More cases have to be studied in detail to obtain climatology of the storm type passing over tropical Indian region. These observational data sets provide wide variety of information to be assimilated to the mesoscale data assimilation system and can be used to force CSRM.The gravity wave generation and stratosphere troposphere exchange (STE) processes associated with convection gained a great deal of attention to modem science and meteorologist. Round the clock observations using VHF and UHF radars along with supplementary data sets like DWR, satellite, GPS/Radiosondes, meteorological rockets and aircrafl observations is needed to explore the role of convection and associated energetics in detail.
Resumo:
Tsunamis are water waves generated by a sudden vertical displacement of the water surface. They are waves generated in the ocean by the disturbance associated with seismic activity, under sea volcanic eruptions, submarine landslides, nuclear explosion or meteorite impacts with the ocean. These waves are generated in the ocean and travel into coastal bays, gulfs, estuaries and rivers. These waves travel as gravity waves with a velocity dependent on water depth. The term tsunami is Japanese and means harbour (tsu) and wave (nami). It has been named so because such waves often develop resonant phenomena in harbours after offshore earthquakes.
Resumo:
The primary aim of the present study is to acquire a large amount of gravity data, to prepare gravity maps and interpret the data in terms of crustal structure below the Bavali shear zone and adjacent regions of northern Kerala. The gravity modeling is basically a tool to obtain knowledge of the subsurface extension of the exposed geological units and their structural relationship with the surroundings. The study is expected to throw light on the nature of the shear zone, crustal configuration below the high-grade granulite terrain and the tectonics operating during geological times in the region. The Bavali shear is manifested in the gravity profiles by a steep gravity gradient. The gravity models indicate that the Bavali shear coincides with steep plane that separates two contrasting crustal densities extending beyond a depth of 30 km possibly down to Moho, justifying it to be a Mantle fault. It is difficult to construct a generalized model of crustal evolution in terms of its varied manifestations using only the gravity data. However, the data constrains several aspects of crustal evolution and provides insights into some of the major events.
Resumo:
In the present thesis, an attempt has been made to study the characteristics of troposphere and lower stratosphere during the passage of tropical cyclones from a tropical station in India using MST radar. MST radar is an excellent tool for studying various features of the atmosphere from ground to mesospheric heights, as it can be operated continuously with good time and altitude resolution. The major objectives are to identify the multiple layers of reflectivity observed in the atmosphere during cyclones, to study the troposphere characteristics during these cyclones and its dependence on cyclone position and intensity, to detect the waves present in the atmosphere, to study the transport of momentum fluxes and to understand stratosphere. The winds in the troposphere and lower stratosphere are greatly affected by the passage of cyclones; the presence of high reflectivity layers below the tropopause suggests the passage of severe weather systems etc. are some of the major findings of the study. The study can be extended further to understand the circulation and dynamics of the atmosphere associated with the passage of tropical cyclones. The gravity wave generation and its characteristics during the passage of storms is another important aspect to be studied in detail.
Resumo:
The aim of the present study is to understand the characteristics and properties of different wave modes and the vertical circulation pattern in the troposphere and lower stratosphere over Indian region using data obtained from the Indian Mesosphere-Stratosphere Troposphere (MST) radar, National Center for Environmental Prediction/National Centres of Atmospheric Research (NCEP/NCAR) reanalysed data and radiosonde observations.Studies on the vertical motion in monsoon Hadley circulation are carried out and the results are discussed . From the analysis of MST radar data, an overall picture of vertical motion of air over Indian region is explained and noted that there exists sinking motion both during winter and summer. Besides, the study shows that there is an anomalous northerly wind in the troposphere over the southern peninsular region during southwest monsoon season.The outcome of the study on intrusion of mid-latitude upper tropospheric trough and associated synoptic-scale vertical velocity over the tropical Indian latitudes are reported and discussed . It shows that there is interaction between north Indian latitudes and tropical easterly region, when there is an eastward movement of Western Disturbance across the country. It explains the strengthening of westerlies and a change of winter westerlies into easterlies in the tropical troposphere and lower stratosphere. The divergence field computed over the MST radar station shows intensification in the downward motion in association with the synoptic systems of the northwest Indian region.
Resumo:
Department of Marine Geology and Geophysics,Cochin University of Science and Technology
Resumo:
This work aims to study the variation in subduction zone geometry along and across the arc and the fault pattern within the subducting plate. Depth of penetration as well as the dip of the Benioff zone varies considerably along the arc which corresponds to the curvature of the fold- thrust belt which varies from concave to convex in different sectors of the arc. The entire arc is divided into 27 segments and depth sections thus prepared are utilized to investigate the average dip of the Benioff zone in the different parts of the entire arc, penetration depth of the subducting lithosphere, the subduction zone geometry underlying the trench, the arctrench gap, etc.The study also describes how different seismogenic sources are identified in the region, estimation of moment release rate and deformation pattern. The region is divided into broad seismogenic belts. Based on these previous studies and seismicity Pattern, we identified several broad distinct seismogenic belts/sources. These are l) the Outer arc region consisting of Andaman-Nicobar islands 2) the back-arc Andaman Sea 3)The Sumatran fault zone(SFZ)4)Java onshore region termed as Jave Fault Zone(JFZ)5)Sumatran fore arc silver plate consisting of Mentawai fault(MFZ)6) The offshore java fore arc region 7)The Sunda Strait region.As the Seismicity is variable,it is difficult to demarcate individual seismogenic sources.Hence, we employed a moving window method having a window length of 3—4° and with 50% overlapping starting from one end to the other. We succeeded in defining 4 sources each in the Andaman fore arc and Back arc region, 9 such sources (moving windows) in the Sumatran Fault zone (SFZ), 9 sources in the offshore SFZ region and 7 sources in the offshore Java region. Because of the low seismicity along JFZ, it is separated into three seismogenic sources namely West Java, Central Java and East Java. The Sunda strait is considered as a single seismogenic source.The deformation rates for each of the seismogenic zones have been computed. A detailed error analysis of velocity tensors using Monte—Carlo simulation method has been carried out in order to obtain uncertainties. The eigen values and the respective eigen vectors of the velocity tensor are computed to analyze the actual deformation pattem for different zones. The results obtained have been discussed in the light of regional tectonics, and their implications in terms of geodynamics have been enumerated.ln the light of recent major earthquakes (26th December 2004 and 28th March 2005 events) and the ongoing seismic activity, we have recalculated the variation in the crustal deformation rates prior and after these earthquakes in Andaman—Sumatra region including the data up to 2005 and the significant results has been presented.ln this chapter, the down going lithosphere along the subduction zone is modeled using the free air gravity data by taking into consideration the thickness of the crustal layer, the thickness of the subducting slab, sediment thickness, presence of volcanism, the proximity of the continental crust etc. Here a systematic and detailed gravity interpretation constrained by seismicity and seismic data in the Andaman arc and the Andaman Sea region in order to delineate the crustal structure and density heterogeneities a Io nagnd across the arc and its correlation with the seismogenic behaviour is presented.
Resumo:
In this thesis the author has presented qualitative studies of certain Kdv equations with variable coefficients. The well-known KdV equation is a model for waves propagating on the surface of shallow water of constant depth. This model is considered as fitting into waves reaching the shore. Renewed attempts have led to the derivation of KdV type equations in which the coefficients are not constants. Johnson's equation is one such equation. The researcher has used this model to study the interaction of waves. It has been found that three-wave interaction is possible, there is transfer of energy between the waves and the energy is not conserved during interaction.
Resumo:
Some investigations on the spectral and statistical characteristics of deep water waves are available for Indian waters. But practically no systematic investigation on the shallow water wave spectral and probabilistic characteristics is made for any part of the Indian coast except for a few restricted studies. Hence a comprehensive study of the shallow water wave climate and their spectral and statistical characteristics for a location (Alleppey) along the southwest coast of India is undertaken based on recorded data. The results of the investigation are presented in this thesis.The thesis comprises of seven chapters
Resumo:
One of the interesting consequences of Einstein's General Theory of Relativity is the black hole solutions. Until the observation made by Hawking in 1970s, it was believed that black holes are perfectly black. The General Theory of Relativity says that black holes are objects which absorb both matter and radiation crossing the event horizon. The event horizon is a surface through which even light is not able to escape. It acts as a one sided membrane that allows the passage of particles only in one direction i.e. towards the center of black holes. All the particles that are absorbed by black hole increases the mass of the black hole and thus the size of event horizon also increases. Hawking showed in 1970s that when applying quantum mechanical laws to black holes they are not perfectly black but they can emit radiation. Thus the black hole can have temperature known as Hawking temperature. In the thesis we have studied some aspects of black holes in f(R) theory of gravity and Einstein's General Theory of Relativity. The scattering of scalar field in this background space time studied in the first chapter shows that the extended black hole will scatter scalar waves and have a scattering cross section and applying tunneling mechanism we have obtained the Hawking temperature of this black hole. In the following chapter we have investigated the quasinormal properties of the extended black hole. We have studied the electromagnetic and scalar perturbations in this space-time and find that the black hole frequencies are complex and show exponential damping indicating the black hole is stable against the perturbations. In the present study we show that not only the black holes exist in modified gravities but also they have similar properties of black hole space times in General Theory of Relativity. 2 + 1 black holes or three dimensional black holes are simplified examples of more complicated four dimensional black holes. Thus these models of black holes are known as toy models of black holes in four dimensional black holes in General theory of Relativity. We have studied some properties of these types of black holes in Einstein model (General Theory of Relativity). A three dimensional black hole known as MSW is taken for our study. The thermodynamics and spectroscopy of MSW black hole are studied and obtained the area spectrum which is equispaced and different thermo dynamical properties are studied. The Dirac perturbation of this three dimensional black hole is studied and the resulting quasinormal spectrum of this three dimensional black hole is obtained. The different quasinormal frequencies are tabulated in tables and these values show an exponential damping of oscillations indicating the black hole is stable against the mass less Dirac perturbation. In General Theory of Relativity almost all solutions contain singularities. The cosmological solution and different black hole solutions of Einstein's field equation contain singularities. The regular black hole solutions are those which are solutions of Einstein's equation and have no singularity at the origin. These solutions possess event horizon but have no central singularity. Such a solution was first put forward by Bardeen. Hayward proposed a similar regular black hole solution. We have studied the thermodynamics and spectroscopy of Hay-ward regular black holes. We have also obtained the different thermodynamic properties and the area spectrum. The area spectrum is a function of the horizon radius. The entropy-heat capacity curve has a discontinuity at some value of entropy showing a phase transition.