65 resultados para Glass preparation

em Cochin University of Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tellurite glasses are photonic materials of special interest to the branch of optoelectronic and communication, due to its important optical properties such as high refractive index, broad IR transmittance, low phonon energy etc. Tellurite glasses are solutions to the search of potential candidates for nonlinear optical devices. Low phonon energy makes it an efficient host for dopant ions like rare earths, allowing a better environment for radiative transitions. The dopant ions maintain majority of their individual properties in the glass matrix. Tellurites are less toxic than chalcogenides, more chemically and thermally stable which makes them a highly suitable fiber material for nonlinear applications in the midinfrared and they are of increased research interest in applications like laser, amplifier, sensor etc. Low melting point and glass transition temperature helps tellurite glass preparation easier than other glass families. In order to probe into the versatility of tellurite glasses in optoelectronic industry; we have synthesized and undertaken various optical studies on tellurite glasses. We have proved that the highly nonlinear tellurite glasses are suitable candidates in optical limiting, with comparatively lower optical limiting threshold. Tuning the optical properties of glasses is an important factor in the optoelectronic research. We have found that thermal poling is an efficient mechanism in tuning the optical properties of these materials. Another important nonlinear phenomenon found in zinc tellurite glasses is their ability to switch from reverse saturable absorption to saturable absorption in the presence of lanthanide ions. The proposed thesis to be submitted will have seven chapters

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tellurite glasses are photonic materials of special interest to the branch of optoelectronic and communication, due to its important optical properties such as high refractive index, broad IR transmittance, low phonon energy etc. Tellurite glasses are solutions to the search of potential candidates for nonlinear optical devices. Low phonon energy makes it an efficient host for dopant ions like rare earths, allowing a better environment for radiative transitions. The dopant ions maintain majority of their individual properties in the glass matrix. Tellurites are less toxic than chalcogenides, more chemically and thermally stable which makes them a highly suitable fiber material for nonlinear applications in the midinfrared and they are of increased research interest in applications like laser, amplifier, sensor etc. Low melting point and glass transition temperature helps tellurite glass preparation easier than other glass families.In order to probe into the versatility of tellurite glasses in optoelectronic industry; we have synthesized and undertaken various optical studies on tellurite glasses. We have proved that the highly nonlinear tellurite glasses are suitable candidates in optical limiting, with comparatively lower optical limiting threshold. Tuning the optical properties of glasses is an important factor in the optoelectronic research. We have found that thermal poling is an efficient mechanism in tuning the optical properties of these materials. Another important nonlinear phenomenon found in zinc tellurite glasses is their ability to switch from reverse saturable absorption to saturable absorption in the presence of lanthanide ions. The proposed thesis to be submitted will have seven chapters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Upgrading two widely used standard plastics, polypropylene (PP) and high density polyethylene (HDPE), and generating a variety of useful engineering materials based on these blends have been the main objective of this study. Upgradation was effected by using nanomodifiers and/or fibrous modifiers. PP and HDPE were selected for modification due to their attractive inherent properties and wide spectrum of use. Blending is the engineered method of producing new materials with tailor made properties. It has the advantages of both the materials. PP has high tensile and flexural strength and the HDPE acts as an impact modifier in the resultant blend. Hence an optimized blend of PP and HDPE was selected as the matrix material for upgradation. Nanokaolinite clay and E-glass fibre were chosen for modifying PP/HDPE blend. As the first stage of the work, the mechanical, thermal, morphological, rheological, dynamic mechanical and crystallization characteristics of the polymer nanocomposites prepared with PP/HDPE blend and different surface modified nanokaolinite clay were analyzed. As the second stage of the work, the effect of simultaneous inclusion of nanokaolinite clay (both N100A and N100) and short glass fibres are investigated. The presence of nanofiller has increased the properties of hybrid composites to a greater extent than micro composites. As the last stage, micromechanical modeling of both nano and hybrid A composite is carried out to analyze the behavior of the composite under load bearing conditions. These theoretical analyses indicate that the polymer-nanoclay interfacial characteristics partially converge to a state of perfect interfacial bonding (Takayanagi model) with an iso-stress (Reuss IROM) response. In the case of hybrid composites the experimental data follows the trend of Halpin-Tsai model. This implies that matrix and filler experience varying amount of strain and interfacial adhesion between filler and matrix and also between the two fillers which play a vital role in determining the modulus of the hybrid composites.A significant observation from this study is that the requirement of higher fibre loading for efficient reinforcement of polymers can be substantially reduced by the presence of nanofiller together with much lower fibre content in the composite. Hybrid composites with both nanokaolinite clay and micron sized E-glass fibre as reinforcements in PP/HDPE matrix will generate a novel class of high performance, cost effective engineering material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study on the preparation , characterization and microwave dielectric properties of AnBn-1O3n (N=5,6,8) type perovskite compounds. The explored ceramics show dielectric constant between 11 and 54,quality factor in the range 2400 to 88900 GHz and Tf in the range -73 to +231ppm/0C.Most of the investigated cation deficient hexagonal perovskites show intermediate dielectric constant with high quality factors. This study gives a general introduction about material, scientific and technological aspects of DRs.Three important ,€r ,Q and Tf, used for the DR characterization are described. The relationship of the above parameters with the fundamental material characteristics is discussed. Different modes are excited when a DR is excited with suitable microwave spectrum of frequencies .A description of analytical determination of frequencies and construction of mode charts used for sample design and mode identification are also discussed. In this study several ceramics are developed for DR purposes, very little attention has been paid to grow the single crystals. It might be due to the fact that the difficulties and time involved in the growth of single crystals, big enough to function as microwave resonators make them expensive .However single crystals of these materials may have very high Q values. It is also possible that a better understanding of the dielectric properties in relation to the structure can be arrived using single crystals. Hence one of the future directions of dielectric resonator research should be to grow good quality single crystals of the above materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work Titania bulk powders and coatings were prepared by subjecting titanium isopropoxide solution to a controlled hydrolysis-condensation process. The powders were characterized using techniques such as FTIR for their chemical interactions, TG-DTA for the thermal decomposition features, XRD for the phase assemblage, BET specific surface area analysis for the textural features. The study discusses the preparation methods and the characterization techniques employed and a detailed discussion on the physico-chemical characterization of the prepared systems. The influence of dopants and leaching on the physico-chemical properties as well as their influence on photo activity is also included. The structural/functional coatings of different Titania compositions includes in this study. Coatings on pre-treated glass surfaces with the best compositions prepared showed 90 % transmittance in the visible region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alloxan induced diabetic animal model was used to evaluate the antidiabetic effect of alkaloids extracted from the leaves of Aegis marine/ose. The alkaloid extract maintained the weight of animals near to that of control ones - whereas there was a decrease in the body weight of diabetic animals. A significant increase in blood glucose (342. 14 -+- 14.89 mg/dl) was seen in diabetic animals but in alkaloid treated group the blood glucose was lowered (90: 12 +_5.81 mg/dl). There was no decrease in blood urea arid sreum cholesterol in the alkaloid treated group of diabetic animals. The liver glycogen decreased in diabetic animals (1.27+.12 g/100g of wet tissue) and the treatment brought the glycogen level to that of control ones (2.51 +.75 g/100 g of wet tissue). The result show that the alkaloid extract has hypoglycaemic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This proposed thesis is entitled “Plasma Polymerised Organic Thin Films: A study on the Structural, Electrical, and Nonlinear Optical Properties for Possible Applications. Polymers and polymer based materials find enormous applications in the realm of electronics and optoelectronics. They are employed as both active and passive components in making various devices. Enormous research activities are going on in this area for the last three decades or so, and many useful contributions are made quite accidentally. Conducting polymers is such a discovery, and eversince the discovery of conducting polyacetylene, a new branch of science itself has emerged in the form of synthetic metals. Conducting polymers are useful materials for many applications like polymer displays, high density data storage, polymer FETs, polymer LEDs, photo voltaic devices and electrochemical cells. With the emergence of molecular electronics and its potential in finding useful applications, organic thin films are receiving an unusual attention by scientists and engineers alike. This is evident from the vast literature pertaining to this field appearing in various journals. Recently, computer aided design of organic molecules have added further impetus to the ongoing research activities in this area. Polymers, especially, conducting polymers can be prepared both in the bulk and in the thinfilm form. However, many applications necessitate that they are grown in the thin film form either as free standing or on appropriate substrates. As far as their bulk counterparts are concerned, they can be prepared by various polymerisation techniques such as chemical routes and electrochemical means. A survey of the literature reveals that polymers like polyaniline, polypyrrole, polythiophene, have been investigated with a view to studying their structural electrical and optical properties. Among the various alternate techniques employed for the preparation of polymer thin films, the method of plasma polymerisation needs special attention in this context. The technique of plasma polymerisation is an inexpensive method and often requires very less infra structure. This method includes the employment of ac, rf, dc, microwave and pulsed sources. They produce pinhole free homogeneous films on appropriate substrates under controlled conditions. In conventional plasma polymerisation set up, the monomer is fed into an evacuated chamber and an ac/rf/dc/ w/pulsed discharge is created which enables the monomer species to dissociate, leading to the formation of polymer thin films. However, it has been found that the structure and hence the properties exhibited by plasma polymerized thin films are quite different from that of their counterparts produced by other thin film preparation techniques such as electrochemical deposition or spin coating. The properties of these thin films can be tuned only if the interrelationship between the structure and other properties are understood from a fundamental point of view. So very often, a through evaluation of the various properties is a pre-requisite for tailoring the properties of the thin films for applications. It has been found that conjugation is a necessary condition for enhancing the conductivity of polymer thin films. RF technique of plasma polymerisation is an excellent tool to induce conjugation and this modifies the electrical properties too. Both oxidative and reductive doping can be employed to modify the electrical properties of the polymer thin films for various applications. This is where organic thin films based on polymers scored over inorganic thin films, where in large area devices can be fabricated with organic semiconductors which is difficult to achieve by inorganic materials. For such applications, a variety of polymers have been synthesized such as polyaniline, polythiophene, polypyrrole etc. There are newer polymers added to this family every now and then. There are many virgin areas where plasma polymers are yet to make a foray namely low-k dielectrics or as potential nonlinear optical materials such as optical limiters. There are also many materials which are not been prepared by the method of plasma polymerisation. Some of the materials which are not been dealt with are phenyl hydrazine and tea tree oil. The advantage of employing organic extracts like tea tree oil monomers as precursors for making plasma polymers is that there can be value addition to the already existing uses and possibility exists in converting them to electronic grade materials, especially semiconductors and optically active materials for photonic applications. One of the major motivations of this study is to synthesize plasma polymer thin films based on aniline, phenyl hydrazine, pyrrole, tea tree oil and eucalyptus oil by employing both rf and ac plasma polymerisation techniques. This will be carried out with the objective of growing thin films on various substrates such as glass, quartz and indium tin oxide (ITO) coated glass. There are various properties namely structural, electrical, dielectric permittivity, nonlinear optical properties which are to be evaluated to establish the relationship with the structure and the other properties. Special emphasis will be laid in evaluating the optical parameters like refractive index (n), extinction coefficient (k), the real and imaginary components of dielectric constant and the optical transition energies of the polymer thin films from the spectroscopic ellipsometric studies. Apart from evaluating these physical constants, it is also possible to predict whether a material exhibit nonlinear optical properties by ellipsometric investigations. So further studies using open aperture z-scan technique in order to evaluate the nonlinear optical properties of a few selected samples which are potential nonlinear optical materials is another objective of the present study. It will be another endeavour to offer an appropriate explanation for the nonlinear optical properties displayed by these films. Doping of plasma polymers is found to modify both the electrical conductivity and optical properties. Iodine is found to modify the properties of the polymer thin films. However insitu iodine doping is tricky and the film often looses its stability because of the escape of iodine. An appropriate insitu technique of doping will be developed to dope iodine in to the plasma polymerized thin films. Doping of polymer thin films with iodine results in improved and modified optical and electrical properties. However it requires tools like FTIR and UV-Vis-NIR spectroscopy to elucidate the structural and optical modifications imparted to the polymer films. This will be attempted here to establish the role of iodine in the modification of the properties exhibited by the films

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing demand for renewable energies due to the limited availability of fossil and nuclear fuels and due to growing environmental problems. Photovoltaic (PV) energy conversion has the potential to contribute significantly to the electrical energy generation in the future. Currently, the cost for photovoltaic systems is one of the main obstacles preventing production and application on a large scale. The photovoltaic research is now focused on the development of materials that will allow mass production without compromising on the conversion efficiencies. Among important selection criteria of PV material and in particular for thin films, are a suitable band gap, high absorption coefficient and reproducible deposition processes capable of large-volume and low cost production. The chalcopyrite semiconductor thin films such as Copper indium selenide and Copper indium sulphide are the materials that are being intensively investigated for lowering the cost of solar cells. Conversion efficiencies of 19 % have been reported for laboratory scale solar cell based on CuInSe2 and its alloys. The main objective of this thesis work is to optimise the growth conditions of materials suitable for the fabrication of solar cell, employing cost effective techniques. A typical heterojunction thin film solar cell consists of an absorber layer, buffer layer and transparent conducting contacts. The most appropriate techniques have been used for depositing these different layers, viz; chemical bath deposition for the window layer, flash evaporation and two-stage process for the absorber layer, and RF magnetron sputtering for the transparent conducting layer. Low cost experimental setups were fabricated for selenisation and sulphurisation experiments, and the magnetron gun for the RF sputtering was indigenously fabricated. The films thus grown were characterised using different tools. A powder X-ray diffractometer was used to analyse the crystalline nature of the films. The energy dispersive X-ray analysis (EDX) and scanning electron microscopy i (SEM) were used for evaluating the composition and morphology of the films. Optical properties were investigated using the UV-Vis-NIR spectrophotometer by recording the transmission/absorption spectra. The electrical properties were studied using the two probe and four probe electrical measurements. Nature of conductivity of the films was determined by thermoprobe and thermopower measurements. The deposition conditions and the process parameters were optimised based on these characterisations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymers exhibit low electron density and they are radiolucent. Polymers can be made radiopaque by different techniques. We report a method for the preparation of radiopaque material from natural rubber (NR). NR in its latex form was iodinated. Iodinated natural rubber (INR) was characterized by using UV, thermo gravimetric analysis (TGA), and X-ray images. INR was compounded at high and low temperatures and its physical properties were measured. The low temperature cured samples show good radiopacity and conductivity. The optical density of low temperature cured samples was measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: Phenol was chemically attached to low molecular weight chlorinated polyisobutylene and stearic acid respectively. These phenolic antioxidants were characterised by IR, 1H NMR and TGA. The efficiency and permanence of these bound antioxidants were compared with conventional antioxidants in natural rubber vulcanisates. The vulcanisates showed comparable ageing resistance in comparison to vulcanisates containing conventional antioxidants. The presence of liquid polymer bound phenol reduce the amount of plasticiser required for compounding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of the proposed work are preparation of ceramic nickel zinc ferrite belonging to the series Ni1-XZnXFe2O4 with x varying from 0 to 1in steps of 0.2, structrural, magnetic and electrical characterization of Ni1-XZnXFe2O4, preparation and evaluation of Cure characteristics of Rubber Ferrite Composites (RFCs), magnetic characterization of RFCs using vibrating sample magnetometer (VSM), electrical characterization of RFCs and estimation of magnetostriction constant form HL parameters. The study deals with the structural and magnetic properties of ceramic fillers, variation of coercivity with composition and the variation of magnetization for different filler loadings are compared and correlated. The dielectric properties of ceramic Ni1-XZnXFe2O4 and rubber ferrite composites containing Ni1-XZnXFe2O4 were evaluated and the ac electrical conductivity (ac) of ceramic as well as composite samples can be calculated by using a simple relationship of the form ac = 2f tan 0r, with the data available from dielectric measurements. The results suggest that the ac electrical conductivity is directly proportional to the frequency