7 resultados para Gettysburg, Battle of, Gettysburg, Pa., 1863
em Cochin University of Science
Resumo:
The photoacoustic investigations carried out on different photonic materials are presented in this thesis. Photonic materials selected for the investigation are tape cast ceramics, muItilayer dielectric coatings, organic dye doped PVA films and PMMA matrix doped with dye mixtures. The studies are performed by the measurement of photoacoustic signal generated as a result of modulated cw laser irradiation of samples. The gas-microphone scheme is employed for the detection of photoacoustic signal. The different measurements reported here reveal the adaptability and utility of the PA technique for the characterization of photonic materials.Ceramics find applications in the field of microelectronics industry. Tape cast ceramics are the building blocks of many electronic components and certain ceramic tapes are used as thermal barriers. The thermal parameters of these tapes will not be the same as that of thin films of the same materials. Parameters are influenced by the presence of foreign bodies in the matrix and the sample preparation technique. Measurements are done on ceramic tapes of Zirconia, Zirconia-Alumina combination, barium titanate, barium tin titanate, silicon carbide, lead zirconate titanateil'Z'T) and lead magnesium niobate titanate(PMNPT). Various configurations viz. heat reflection geometry and heat transmission geometry of the photoacoustic technique have been used for the evaluation of different thermal parameters of the sample. Heat reflection geometry of the PA cell has been used for the evaluation of thermal effusivity and heat transmission geometry has been made use of in the evaluation of thermal diffusivity. From the thermal diffusivity and thermal effusivity values, thermal conductivity is also calculated. The calculated values are nearly the same as the values reported for pure materials. This shows the feasibility of photoacoustic technique for the thermal characterization of ceramic tapes.Organic dyes find applications as holographic recording medium and as active media for laser operations. Knowledge of the photochemical stability of the material is essential if it has to be used tor any of these applications. Mixing one dye with another can change the properties of the resulting system. Through careful mixing of the dyes in appropriate proportions and incorporating them in polymer matrices, media of required stability can be prepared. Investigations are carried out on Rhodamine 6GRhodamine B mixture doped PMMA samples. Addition of RhB in small amounts is found to stabilize Rh6G against photodegradation and addition of Rh6G into RhB increases the photosensitivity of the latter. The PA technique has been successfully employed for the monitoring of dye mixture doped PMMA sample. The same technique has been used for the monitoring of photodegradation ofa laser dye, cresyl violet doped polyvinyl alcohol also.Another important application of photoacoustic technique is in nondestructive evaluation of layered samples. Depth profiling capability of PA technique has been used for the non-destructive testing of multilayer dielectric films, which are highly reflecting in the wavelength range selected for investigations. Eventhough calculation of thickness of the film is not possible, number of layers present in the system can be found out using PA technique. The phase plot has clear step like discontinuities, the number of which coincides with the number of layers present in the multilayer stack. This shows the sensitivity of PA signal phase to boundaries in a layered structure. This aspect of PA signal can be utilized in non-destructive depth profiling of reflecting samples and for the identification of defects in layered structures.
Resumo:
An open cell photoacoustic (PA) configuration has been employed to evaluate the thermal diffusivity of intrinsic InP as well as InP doped with tin and iron. Thermal diffusivity data have been evaluated from variation of phase of PA signal as a function of modulation frequency. In doped samples, we observe a reduced value for thermal diffusivity in comparison with intrinsic InP. We also observed that, while the phase of the PA signal varies linearly with the square root of chopping frequency for doped samples, the intrinsic material does not exhibit such behaviour in the experimental frequency range. These results have been interpreted in terms of the heat generation and phonon assisted heat diffusion mechanisms in semiconductors.
Resumo:
We report a photoacoustic (PA) study of the thermal and transport properties of a GaAs epitaxial layer doped with Si at varying doping concentration, grown on GaAs substrate by molecular beam epitaxy. The data are analyzed on the basis of Rosencwaig and Gersho’s theory of the PA effect. The amplitude of the PA signal gives information about various heat generation mechanisms in semiconductors. The experimental data obtained from the measurement of the PA signal as a function of modulation frequency in a heat transmission configuration were fitted with the phase of PA signal obtained from the theoretical model evaluated by considering four parameters—viz., thermal diffusivity, diffusion coefficient, nonradiative recombination time, and surface recombination velocity—as adjustable parameters. It is seen from the analysis that the photoacoustic technique is sensitive to the changes in the surface states depend on the doping concentration. The study demonstrates the effectiveness of the photoacoustic technique as a noninvasive and nondestructive method to measure and evaluate the thermal and transport properties of epitaxial layers.
Resumo:
An open-cell configuration of the photoacoustic (PA) technique is employed to determine the thermal and transport properties of intrinsic Si and Si doped with B (p-type) and P (n-type). The experimentally obtained phase of the PA signal under heat transmission configuration is fitted to that of theoretical model by taking thermal and transport properties, namely, thermal diffusivity, diffusion coefficient, and surface recombination velocity, as adjustable parameters. It is seen from the analysis that doping and also the nature of dopant have a strong influence on the thermal and transport properties of semiconductors. The results are interpreted in terms of the carrier-assisted and phonon-assisted heat transfer mechanisms in semiconductors as well as the various scattering processes occurring in the propagation of heat carriers.
Resumo:
The acoustic signals generated in solids due to interaction with pulsed laser beam is used to determine the ablation threshold of bulk polymer samples of teflon (polytetrafluoroethylene) and nylon under the irradiation from a Q-switched Nd:YAG laser at 1.06µm wavelength. A suitably designed piezoelectric transducer is employed for the detection of photoacoustic (PA) signals generated in this process. It has been observed that an abrupt increase in the amplitude of the PA signal occurs at the ablation threshold. Also there exist distinct values for the threshold corresponding to different mechanisms operative in producing damages like surface morphology, bond breaking and melting processes at different laser energy densities.
Resumo:
Among the large number of photothcrmal techniques available, photoacoustics assumes a very significant place because of its essential simplicity and the variety of applications it finds in science and technology. The photoacoustic (PA) effect is the generation of an acoustic signal when a sample, kept inside an enclosed volume, is irradiated by an intensity modulated beam of radiation. The radiation absorbed by the sample is converted into thermal waves by nonradiative de-excitation processes. The propagating thermal waves cause a corresponding expansion and contraction of the gas medium surrounding the sample, which in tum can be detected as sound waves by a sensitive microphone. These sound waves have the same frequency as the initial modulation frequency of light. Lock-in detection method enables one to have a sufficiently high signal to noise ratio for the detected signal. The PA signal amplitude depends on the optical absorption coefficient of the sample and its thermal properties. The PA signal phase is a function of the thermal diffusivity of the sample.Measurement of the PA amplitude and phase enables one to get valuable information about the thermal and optical properties of the sample. Since the PA signal depends on the optical and thennal properties of the sample, their variation will get reflected in the PA signal. Therefore, if the PA signal is collected from various points on a sample surface it will give a profile of the variations in the optical/thennal properties across the sample surface. Since the optical and thermal properties are affected by the presence of defects, interfaces, change of material etc. these will get reflected in the PA signal. By varying the modulation frequency, we can get information about the subsurface features also. This is the basic principle of PA imaging or PA depth profiling. It is a quickly expanding field with potential applications in thin film technology, chemical engineering, biology, medical diagnosis etc. Since it is a non-destructive method, PA imaging has added advantages over some of the other imaging techniques. A major part of the work presented in this thesis is concemed with the development of a PA imaging setup that can be used to detect the presence of surface and subsmface defects in solid samples.Determination of thermal transport properties such as thermal diffusivity, effusivity, conductivity and heat capacity of materials is another application of photothennal effect. There are various methods, depending on the nature of the sample, to determine these properties. However, there are only a few methods developed to determine all these properties simultaneously. Even though a few techniques to determine the above thermal properties individually for a coating can be found in literature, no technique is available for the simultaneous measurement of these parameters for a coating. We have developed a scanning photoacoustic technique that can be used to determine all the above thermal transport properties simultaneously in the case of opaque coatings such as paints. Another work that we have presented in this thesis is the determination of thermal effusivity of many bulk solids by a scanning photoacoustic technique. This is one of the very few methods developed to determine thermal effiisivity directly.
Resumo:
The carrier transport mechanism of polyaniline (PA) thin films prepared by radio frequency plasma polymerization is described in this paper. The mechanism of electrical conduction and carrier mobility of PA thin films for different temperatures were examined using the aluminium–PA–aluminium (Al–PA–Al) structure. It is found that the mechanism of carrier transport in these thin films is space charge limited conduction. J –V studies on an asymmetric electrode configuration using indium tin oxide (ITO) as the base electrode and Al as the upper electrode (ITO–PA–Al structure) show a diode-like behaviour with a considerable rectification ratio