7 resultados para Geophysical observatories
em Cochin University of Science
Resumo:
The main objective of the present study is to model the gravity fields in terms of lithospheric structure below the western continental margin of India (WCMI) identify zones of crustal mass anomalies and attempt to infer the location of Ocean Continent transition in the Arabian Sea. In this study, the area starting from the western shield margin to the region covering the deep oceanic parts of the Arabian Sea which is bounded by Carlsberg and Cerg and Central Indian ridges in the south, eastern part of the Indus Cone in the west and falling between 630E and 800E longitudes, and 50N - 240N latitudes has been considered. The vast amount of seismic reflection and refraction data in the form of crustal velocities, basement configuration and crustal thicknesses available for the west coast as well as the eastern Arabian Sea has been utilized for this purpose
Resumo:
The present study deals with the different hydrogeological characteristics of the coastal region of central Kerala and a comparative analysis with corresponding hard rock terrain. The coastal regions lie in areas where the aquifer systems discharge groundwater ultimately into the sea. Groundwater development in such regions will require a precise understanding of the complex mechanism of the saline and fresh water relationship, so that the withdrawals are so regulated as to avoid situations leading to upcoming of the saline groundwater bodies as also to prevent migration of sea water ingress further inland. Coastal tracts of Kerala are formed by several drainage systems. Thick pile of semi-consolidated and consolidated sediments from Tertiary to Recent age underlies it. These sediments comprise phreatic and confined aquifer systems. The corresponding hard rock terrain is encountered with laterites and underlined by the Precambrian metamorphic rocks. Supply of water from hard rock terrain is rather limited. This may be due to the small pore size, low degree of interconnectivity and low extent of weathering of the country rocks. The groundwater storage is mostly controlled by the thickness and hydrological properties of the weathered zone and the aquifer geometry. The over exploitation of groundwater, beyond the ‘safe yield’ limit, cause undesirable effects like continuous reduction in groundwater levels, reduction in river flows, reduction in wetland surface, degradation of groundwater quality and many other environmental problems like drought, famine etc.
Resumo:
The present investigation on the Muvattupuzha river basin is an integrated approach based on hydrogeological, geophysical, hydrogeochemical parameters and the results are interpreted using satellite data. GIS also been used to combine the various spatial and non-spatial data. The salient finding of the present study are accounted below to provide a holistic picture on the groundwaters of the Muvattupuzha river basin. In the Muvattupuzha river basin the groundwaters are drawn from the weathered and fractured zones. The groundwater level fluctuations of the basin from 1992 to 2001 reveal that the water level varies between a minimum of 0.003 m and a maximum of 3.45 m. The groundwater fluctuation is affected by rainfall. Various aquifer parameters like transmissivity, storage coefficient, optimum yield, time for full recovery and specific capacity indices are analyzed. The depth to the bedrock of the basin varies widely from 1.5 to 17 mbgl. A ground water prospective map of phreatic aquifer has been prepared based on thickness of the weathered zone and low resistivity values (<500 ohm-m) and accordingly the basin is classified in three phreatic potential zones as good, moderate and poor. The groundwater of the Muvattupuzha river basin, the pH value ranges from 5.5 to 8.1, in acidic nature. Hydrochemical facies diagram reveals that most of the samples in both the seasons fall in mixing and dissolution facies and a few in static and dynamic natures. Further study is needed on impact of dykes on the occurrence and movement of groundwater, impact of seapages from irrigation canals on the groundwater quality and resources of this basin, and influence of inter-basin transfer of surface water on groundwater.
Resumo:
TRMM Microwave Imager (TMI) is reported to be a useful sensor to measure the atmospheric and oceanic parameters even in cloudy conditions. Vertically integrated specific humidity, Total Precipitable Water (TPW) retrieved from the water vapour absorption channel (22GHz.) along with 10m wind speed and rain rate derived from TMI is used to investigate the moisture variation over North Indian Ocean. Intraseasonal Oscillations (ISO) of TPW during the summer monsoon seasons 1998, 1999, and 2000 over North Indian Ocean is explored using wavelet analysis. The dominant waves in TPW during the monsoon periods and the differences in ISO over Arabian Sea and Bay of Bengal are investigated. The northward propagation of TPW anomaly and its coherence with the coastal rainfall is also studied. For the diagnostic study of heavy rainfall spells over the west coast, the intrusion of TPW over the North Arabian Sea is seen to be a useful tool.
Resumo:
During 1990's the Wavelet Transform emerged as an important signal processing tool with potential applications in time-frequency analysis and non-stationary signal processing.Wavelets have gained popularity in broad range of disciplines like signal/image compression, medical diagnostics, boundary value problems, geophysical signal processing, statistical signal processing,pattern recognition,underwater acoustics etc.In 1993, G. Evangelista introduced the Pitch- synchronous Wavelet Transform, which is particularly suited for pseudo-periodic signal processing.The work presented in this thesis mainly concentrates on two interrelated topics in signal processing,viz. the Wavelet Transform based signal compression and the computation of Discrete Wavelet Transform. A new compression scheme is described in which the Pitch-Synchronous Wavelet Transform technique is combined with the popular linear Predictive Coding method for pseudo-periodic signal processing. Subsequently,A novel Parallel Multiple Subsequence structure is presented for the efficient computation of Wavelet Transform. Case studies also presented to highlight the potential applications.
Resumo:
The present investigation on " Hydrology, stratigraphy, and evolution of the palaeo-lagoon (Koleland basin)in the Central Kerala coast, India" is an integrated approach based on hydrogeological,geophysical,hydrochemical and stratigraphic aspects.A strong scientific data base of the study area is generated using interpretation of well observation and water quality analysis. The salient findings of the present study are given to provide a holistic picture on the hydrogeology (including groundwater resource and its quality),stratigraphy and evolution of the palaeo-lagoon
Resumo:
Regional climate models are becoming increasingly popular to provide high resolution climate change information for impacts assessments to inform adaptation options. Many countries and provinces requiring these assessments are as small as 200,000 km2 in size, significantly smaller than an ideal domain needed for successful applications of one-way nested regional climate models. Therefore assessments on sub-regional scales (e.g., river basins) are generally carried out using climate change simulations performed for relatively larger regions. Here we show that the seasonal mean hydrological cycle and the day-to-day precipitation variations of a sub-region within the model domain are sensitive to the domain size, even though the large scale circulation features over the region are largely insensitive. On seasonal timescales, the relatively smaller domains intensify the hydrological cycle by increasing the net transport of moisture into the study region and thereby enhancing the precipitation and local recycling of moisture. On daily timescales, the simulations run over smaller domains produce higher number of moderate precipitation days in the sub-region relative to the corresponding larger domain simulations. An assessment of daily variations of water vapor and the vertical velocity within the sub-region indicates that the smaller domains may favor more frequent moderate uplifting and subsequent precipitation in the region. The results remained largely insensitive to the horizontal resolution of the model, indicating the robustness of the domain size influence on the regional model solutions. These domain size dependent precipitation characteristics have the potential to add one more level of uncertainty to the downscaled projections.